-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnn3_driver.py
274 lines (198 loc) · 8.41 KB
/
cnn3_driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
'''
Using Bottleneck Features for Multi-Class Classification in Keras
We use this technique to build powerful (high accuracy without overfitting) Image Classification systems with small
amount of training data.
The full tutorial to get this code working can be found at the "Codes of Interest" Brog at the following link,
http://www.codesofinterest.com/2017/08/bottleneck-features-multi-class-classification-keras.html
Please go through the tutorial before attrmpting to run this code, as it explains how to setup your training data.
The code was tested on Python 3.5, with the following library versions,
Keras 2.0.6
TensorFlow 1.2.1
OpenCV 3.2.0
This should work with Theano as well, but untested.
reference: https://gist.github.com/Thimira/354b90d59faf8b0d758f74eae3a511e2
VGG16 on Caribe sweetspot:
128 batch, 50 epock, without dropout
'''
import numpy as np
import keras
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from keras.models import Sequential
from keras.layers import Dropout, Flatten, Dense
from keras import applications
from keras.utils.np_utils import to_categorical
import matplotlib.pyplot as plt
import math
import cv2
import img_set_builder
img_src = "Caribe/" # original
#img_src = "Caribe_sub/" # subset
train_data_dir = 'caribe_train/'
validation_data_dir = 'caribe_val/'
#img_set_builder.buildTestAndVal(img_src, train_data_dir, validation_data_dir) # run once
# dimensions of our images.
img_width, img_height = 224, 224
top_model_weights_path = 'bottleneck_fc_model.h5'
# number of epochs to train top model
epochs = 50
# batch size used by flow_from_directory and predict_generator
batch_size = 128
# # with data augmentation
# datagen_train = ImageDataGenerator(rescale=1. / 255,
# shear_range = 0.2,
# zoom_range = 0.2,
# horizontal_flip = True)
# without data augmentation and horizontal flip
datagen_train = ImageDataGenerator(rescale=1. / 255,
horizontal_flip = True)
datagen_val = ImageDataGenerator(rescale=1. / 255)
def save_bottlebeck_features():
# build the VGG16 network
model = applications.VGG16(include_top=False, weights='imagenet')
#model = applications.resnet50.ResNet50(include_top=False, weights='imagenet')
generator = datagen_train.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
print(len(generator.filenames))
#print(generator.class_indices)
print(len(generator.class_indices))
nb_train_samples = len(generator.filenames)
num_classes = len(generator.class_indices)
predict_size_train = int(math.ceil(nb_train_samples / batch_size))
bottleneck_features_train = model.predict_generator(
generator, predict_size_train)
np.save('bottleneck_features_train.npy', bottleneck_features_train)
generator = datagen_val.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_validation_samples = len(generator.filenames)
predict_size_validation = int(
math.ceil(nb_validation_samples / batch_size))
bottleneck_features_validation = model.predict_generator(
generator, predict_size_validation)
np.save('bottleneck_features_validation.npy',
bottleneck_features_validation)
def train_top_model():
generator_top = datagen_train.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=False)
nb_train_samples = len(generator_top.filenames)
num_classes = len(generator_top.class_indices)
# save the class indices to use use later in predictions
np.save('class_indices.npy', generator_top.class_indices)
# load the bottleneck features saved earlier
train_data = np.load('bottleneck_features_train.npy')
# get the class lebels for the training data, in the original order
train_labels = generator_top.classes
# https://github.com/fchollet/keras/issues/3467
# convert the training labels to categorical vectors
train_labels = to_categorical(train_labels, num_classes=num_classes)
generator_top = datagen_val.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode=None,
shuffle=False)
nb_validation_samples = len(generator_top.filenames)
validation_data = np.load('bottleneck_features_validation.npy')
validation_labels = generator_top.classes
validation_labels = to_categorical(
validation_labels, num_classes=num_classes)
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(256, activation='relu'))
#model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='sigmoid'))
# setting clipnorm and clipvalue helps with loss = nan but does not solves it
rmsOpt = keras.optimizers.RMSprop(lr=2e-4, rho=0.9, epsilon=1e-08, decay=0.0, clipnorm=1. , clipvalue=0.5)
model.compile(optimizer=rmsOpt,
loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
(eval_loss, eval_accuracy) = model.evaluate(
validation_data, validation_labels, batch_size=batch_size, verbose=1)
print("[INFO] accuracy: {:.2f}%".format(eval_accuracy * 100))
print("[INFO] Loss: {}".format(eval_loss))
plt.figure(1)
# summarize history for accuracy
plt.subplot(211)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
# summarize history for loss
plt.subplot(212)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
def predict(image_path, top_results):
# load the class_indices saved in the earlier step
class_dictionary = np.load('class_indices.npy').item()
num_classes = len(class_dictionary)
# add the path to your test image below
orig = cv2.imread(image_path)
#print("[INFO] loading and preprocessing image...")
image = load_img(image_path, target_size=(224, 224))
image = img_to_array(image)
# important! otherwise the predictions will be '0'
image = image / 255
image = np.expand_dims(image, axis=0)
# build the VGG16 network
model = applications.VGG16(include_top=False, weights='imagenet')
# get the bottleneck prediction from the pre-trained VGG16 model
bottleneck_prediction = model.predict(image)
# build top model
model = Sequential()
model.add(Flatten(input_shape=bottleneck_prediction.shape[1:]))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='sigmoid'))
model.load_weights(top_model_weights_path)
# use the bottleneck prediction on the top model to get the final
# classification
class_predicted = model.predict_classes(bottleneck_prediction, verbose=0)
#print('class predicted: ')
#print(class_predicted)
probabilities = model.predict_proba(bottleneck_prediction, verbose=0).tolist()[0]
#print('prob: ')
#print(probabilities)
topX = sorted(zip(probabilities), reverse=True)[:top_results]
#print(type(topX))
label = []
inID = class_predicted[0]
inv_map = {v: k for k, v in class_dictionary.items()}
#label = inv_map[inID]
for prob in topX:
label.append(inv_map[probabilities.index(prob[0])])
# get the prediction label
#print("Image ID: {}, Label: {}".format(inID, label))
return label
# # display the predictions with the image
# cv2.putText(orig, "Predicted: {}".format(label), (10, 30),
# cv2.FONT_HERSHEY_PLAIN, 1.5, (43, 99, 255), 2)
# cv2.imshow("Classification", orig)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
if __name__ == "__main__":
save_bottlebeck_features()
train_top_model()
#predict()
#cv2.destroyAllWindows()