-
Notifications
You must be signed in to change notification settings - Fork 0
/
MSNet.html
100 lines (86 loc) · 5.79 KB
/
MSNet.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Benchmark Datasets for Machine Learning for Natural Disasters</title>
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon">
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-gH2yIJqKdNHPEq0n4Mqa/HGKIhSkIHeL5AyhkYV8i59U5AR6csBvApHHNl/vI1Bx" crossorigin="anonymous">
<link href="customstylesheet.css" rel="stylesheet">
<link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css">
</head>
<!-- HEADER/ NAV BAR -->
<div class>
<header class="d-flex flex-wrap justify-content-center pb-2 mb-3 border-bottom">
<a href="/" class=" d-flex align-items-center mt-0 mb-4 mb-md-5 me-md-auto text-dark text-decoration-none"> </a>
<ul class="nav nav-pills">
<li class="nav-item"><a href="index.html" class="nav-link" aria-current="page">Home</a></li>
<li class="nav-item"><a href="tableNADBenchmarks.pdf" class="nav-link">Datasets</a></li>
<li class="nav-item"><a href="aboutus.html" class="nav-link">About</a></li>
<li class="nav-item"><a href="submitnew.html" class="nav-link">Submit New</a></li>
<li class="nav-item"><a href="https://github.com/ROC-HCI/NADBenchmarks" class="nav-link">Github</a></li>
</ul>
</header>
</div>
<body style="background-color:#FFFAF0;">
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-A3rJD856KowSb7dwlZdYEkO39Gagi7vIsF0jrRAoQmDKKtQBHUuLZ9AsSv4jD4Xa" crossorigin="anonymous"></script>
<!-- Blog entry 10 -->
<div class="w3-card-4 w3-margin w3-white">
<div class="w3-container w3-padding-large">
<h3><b>MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos</b></h3> <!-- Title -->
<h5> Video | Hurricane and Tornado | Response </h5> <!-- Type | Topic | Disaster phase -->
</div>
<div class="w3-container"> <!-- Data description -->
<p> ISBDA (Instance Segmentation in Building Damage Assessment) is a dataset for hurricane and tornado building damage assessment. It contains 1,030 images from 10 videos of disaster aftermaths (84 min total duration) and 2,961 damaged part instances. It is introduced for image segmentation and multiclass (ordinal) classification. </p>
<div>
<div class="bd-example-snippet bd-code-snippet"><div class="bd-example">
<ul class="list-group"> <!-- change the parts after strong -->
<!-- <li class="list-group-item disabled" aria-disabled="true">A disabled item</li> -->
<li class="list-group-item"> <strong>ML task type:</strong> Image segmentation, multiclass (ordinal) classification </li>
<li class="list-group-item"><strong>Data Source:</strong> Social Media </li>
<li class="list-group-item"><strong>Size:</strong> 1,030 Images sampled from 10 videos (84 min total duration) </li>
<li class="list-group-item"><strong>Timespan:</strong> 2017 - 2019</li>
<li class="list-group-item"> <strong>Geographical Coverage:</strong> Florida, Missouri, Illinois, Texas, Alabama, North Carolina </li>
</ul>
</div></div>
<div>
<div class="bd-example-snippet bd-code-snippet mt-2"><div class="bd-example">
<ul class="list-group"> <!-- change the parts after strong -->
<!-- <li class="list-group-item disabled" aria-disabled="true">A disabled item</li> -->
<li class="list-group-item"> <strong>Baseline Information</strong></li>
<li class="list-group-item"> <strong>Evaluated on:</strong> MS-Net </li>
<li class="list-group-item"> <strong>Metrics used:</strong> COCO instance segmentation metric including AP (averaged over all IoU thresholds)</li>
<li class="list-group-item"> <strong>Results as reported in original paper:</strong> 37.2</li>
</ul>
</div></div>
<div>
<div class="bd-example-snippet bd-code-snippet mt-2"><div class="bd-example">
<ul class="list-group"> <!-- change the parts after strong -->
<!-- <li class="list-group-item disabled" aria-disabled="true">A disabled item</li> -->
<li class="list-group-item"> <strong>Find out more by:</strong></li>
<li class="list-group-item"> <a href="https://ieeexplore.ieee.org/document/9423256" target="_blank">Reading the research paper</a></li>
<li class="list-group-item"> <a href="https://github.com/zgzxy001/MSNET" target="_blank">Checking out the dataset!</a></li>
</ul>
</div></div>
<div>
<div class="bd-example-snippet bd-code-snippet mt-2"><div class="bd-example">
<div class="accordion" id="accordionExample">
<div class="accordion-item">
<h4 class="accordion-header" id="headingOne">
<button class="accordion-button" type="button" data-bs-toggle="collapse" data-bs-target="#collapseOne" aria-expanded="true" aria-controls="collapseOne">
If you're using this resource, please cite:
</button>
</h4>
<div id="collapseOne" class="accordion-collapse collapse show" aria-labelledby="headingOne" data-bs-parent="#accordionExample">
<div class="accordion-body">
Xiaoyu Zhu, Junwei Liang, and Alexander Hauptmann. MSNET: A multilevel instance segmentation network for natural
disaster damage assessment in aerial videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2023–2032, 2021.
</div>
</div>
</div>
</div>
</div>
<hr>
</body>
</html>