-
Notifications
You must be signed in to change notification settings - Fork 0
/
Curating flood extent26.html
100 lines (86 loc) · 5.6 KB
/
Curating flood extent26.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Benchmark Datasets for Machine Learning for Natural Disasters</title>
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon">
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-gH2yIJqKdNHPEq0n4Mqa/HGKIhSkIHeL5AyhkYV8i59U5AR6csBvApHHNl/vI1Bx" crossorigin="anonymous">
<link href="customstylesheet.css" rel="stylesheet">
<link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css">
</head>
<!-- HEADER/ NAV BAR -->
<div class>
<header class="d-flex flex-wrap justify-content-center pb-2 mb-3 border-bottom">
<a href="/" class=" d-flex align-items-center mt-0 mb-4 mb-md-5 me-md-auto text-dark text-decoration-none"> </a>
<ul class="nav nav-pills">
<li class="nav-item"><a href="index.html" class="nav-link" aria-current="page">Home</a></li>
<li class="nav-item"><a href="tableNADBenchmarks.pdf" class="nav-link">Datasets</a></li>
<li class="nav-item"><a href="aboutus.html" class="nav-link">About</a></li>
<li class="nav-item"><a href="submitnew.html" class="nav-link">Submit New</a></li>
<li class="nav-item"><a href="https://github.com/ROC-HCI/NADBenchmarks" class="nav-link">Github</a></li>
</ul>
</header>
</div>
<body style="background-color:#FFFAF0;">
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js" integrity="sha384-A3rJD856KowSb7dwlZdYEkO39Gagi7vIsF0jrRAoQmDKKtQBHUuLZ9AsSv4jD4Xa" crossorigin="anonymous"></script>
<!-- Blog entry 26 -->
<div class="w3-card-4 w3-margin w3-white">
<div class="w3-container w3-padding-large">
<h3><b>Curating flood extent data and leveraging citizen science for benchmarking machine learning solutions</b></h3> <!-- Title -->
<h5> Image | Flood | Preparedness </h5> <!-- Type | Topic | Disaster phase -->
</div>
<div class="w3-container"> <!-- Data description -->
<p> This is an image dataset for flood extent detection. It is a 4.11 GB download and is introdcued for image segmentation.</p>
<div>
<div class="bd-example-snippet bd-code-snippet"><div class="bd-example">
<ul class="list-group"> <!-- change the parts after strong -->
<!-- <li class="list-group-item disabled" aria-disabled="true">A disabled item</li> -->
<li class="list-group-item"><strong>ML task type:</strong> Image segmentation </li>
<li class="list-group-item"><strong>Data Source:</strong> Earth Observation Data and GeoSpatial Imagery (SAR)</li>
<li class="list-group-item"><strong>Size:</strong> 4.11 GB </li>
<li class="list-group-item"><strong>Timespan:</strong> N/A </li>
<li class="list-group-item"> <strong>Geographical Coverage:</strong> Bangladesh, Florence, Nebraska, North Alabama, Red River North </li>
</ul>
</div></div>
<div>
<div class="bd-example-snippet bd-code-snippet mt-2"><div class="bd-example">
<ul class="list-group"> <!-- change the parts after strong -->
<!-- <li class="list-group-item disabled" aria-disabled="true">A disabled item</li> -->
<li class="list-group-item"> <strong>Baseline Information</strong></li>
<li class="list-group-item"> <strong>Evaluated on:</strong> UNet, Feature Pyramid Network(FPN)</li>
<li class="list-group-item"> <strong>Metrics used:</strong> Intersection over Union</li>
<li class="list-group-item"> <strong>Results as reported in original paper: </strong> IOU: 0.6198 (UNet), 0.6021 (FPN)</li>
</ul>
</div></div>
<div>
<div class="bd-example-snippet bd-code-snippet mt-2"><div class="bd-example">
<ul class="list-group"> <!-- change the parts after strong -->
<!-- <li class="list-group-item disabled" aria-disabled="true">A disabled item</li> -->
<li class="list-group-item"> <strong>Find out more by:</strong></li>
<li class="list-group-item"> <a href="https://www.essoar.org/doi/abs/10.1002/essoar.10511103.1" target="_blank">Reading the research paper</a></li>
<li class="list-group-item"> Note: This version of information is before the paper has been peer reviewed. At the point of data extraction, it is under consideration at Earth and Space Science.</li>
</ul>
</div></div>
<div>
<div class="bd-example-snippet bd-code-snippet mt-2"><div class="bd-example">
<div class="accordion" id="accordionExample">
<div class="accordion-item">
<h4 class="accordion-header" id="headingOne">
<button class="accordion-button" type="button" data-bs-toggle="collapse" data-bs-target="#collapseOne" aria-expanded="true" aria-controls="collapseOne">
If you're using this resource, please cite:
</button>
</h4>
<div id="collapseOne" class="accordion-collapse collapse show" aria-labelledby="headingOne" data-bs-parent="#accordionExample">
<div class="accordion-body">
Shubhankar Gahlot, Muthukumaran Ramasubramanian, Iksha Gurung, Ronny Hansch, Andrew Molthan, and Manil
Maskey. Curating flood extent data and leveraging citizen science for benchmarking machine learning solutions. Earth
and Space Science Open Archive, page 9, 2022.
</div>
</div>
</div>
</div>
</div>
<hr>
</body>
</html>