-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
49 lines (39 loc) · 1.78 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from utils import utils
from PIL import Image
from tqdm import tqdm
import torch
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
if len(opt.pretrain_model_path):
model.load_pretrain_model()
else:
model.setup(opt) # regular setup: load and print networks; create schedulers
if len(opt.save_as_dir):
save_dir = opt.save_as_dir
else:
save_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch))
if opt.load_iter > 0: # load_iter is 0 by default
save_dir = '{:s}_iter{:d}'.format(save_dir, opt.load_iter)
os.makedirs(save_dir, exist_ok=True)
print('creating result directory', save_dir)
network = model.netG
network.eval()
for i, data in tqdm(enumerate(dataset), total=len(dataset)):
inp = data['LR']
with torch.no_grad():
output_SR = network(inp)
img_path = data['LR_paths'] # get image paths
output_sr_img = utils.tensor_to_img(output_SR, normal=True)
save_path = os.path.join(save_dir, img_path[0].split('/')[-1])
save_img = Image.fromarray(output_sr_img)
save_img.save(save_path)