-
Notifications
You must be signed in to change notification settings - Fork 8
/
models.py
370 lines (320 loc) · 15.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import math
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.models.vision_transformer import Attention, Mlp, PatchEmbed
from transformers import AutoModel, AutoTokenizer
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
class LabelEmbedder(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
# class TaxStr_Embedder(nn.Module):
# """
# Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
# """
# def __init__(self, num_classes, hidden_size):
# super().__init__()
# self.bge_model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5').embeddings
# self.embedding_table = nn.Embedding(num_classes, hidden_size)
# self.num_classes = num_classes
# # self.emb_linear2 = nn.Linear(1024, hidden_size, bias=True)
# self.emb_2_linear = nn.Sequential(
# nn.Linear(1024, hidden_size, bias=True),
# nn.SiLU(),
# nn.Linear(hidden_size, hidden_size, bias=True)
# )
# def forward(self, tax_str):
# # print(tax_str)
# with torch.no_grad():
# model_output = self.bge_model(tax_str.long())
# sentence_embeddings = model_output[:,0,:]
# sentence_embeddings = nn.functional.normalize(sentence_embeddings, p=2, dim=1)
# out_emb = self.emb_2_linear(sentence_embeddings)
# return out_emb
#################################################################################
# Core DiT Model #
#################################################################################
class MyDiTBlock_conta(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, num_heads, mlp_ratio, slice_size,**block_kwargs):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# local attn Processing
self.norm3 = nn.LayerNorm(2*hidden_size, elementwise_affine=False, eps=1e-6)
self.norm4 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.local_nat = Attention(hidden_size, num_heads=1, **block_kwargs)
self.slice_size = slice_size
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=2*hidden_size, hidden_features=mlp_hidden_dim, out_features=hidden_size,act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 9 * hidden_size, bias=True)
)
self.adaLN_modulation2 = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 3 * 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_nat, scale_nat, gate_nat = self.adaLN_modulation(c).chunk(9, dim=1)
shift_mlp, scale_mlp, _ = self.adaLN_modulation2(c).chunk(3, dim=1)
b, l, d = x.shape
x0 = self.norm4(x)
x1 = rearrange(x0, 'b (i j) d -> b i j d', i=self.slice_size, j=l//self.slice_size)
x1 = rearrange(x1, 'b i j d -> (b i) j d')
x1 = self.local_nat(x1)
x1 = rearrange(x1, '(b i) j d -> b i j d', b=b,i=self.slice_size)
x1 = rearrange(x1, 'b i j d -> b (i j) d')
x1 = x0 + gate_nat.unsqueeze(1) * (modulate(self.norm2(x1), shift_nat, scale_nat))
x2 = x0 + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x0), shift_msa, scale_msa))
x_concat = torch.cat((x1, x2), dim=2)
x = x0 + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm3(x_concat), shift_mlp, scale_mlp))
# x = self.mlp2(x)
return x
class MyFinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, 2*hidden_size, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
DiT_XL_2(**kwargs): DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
num_classes=1000,
learn_sigma=True,
slice_size=1,
):
super().__init__()
self.embeding = nn.Embedding(21,hidden_size)
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
# self.tax_str_embedder = TaxStr_Embedder(num_classes, hidden_size)
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
self.x_embedder.num_patches = 256
# Will use fixed sin-cos embedding:
self.pos_embed = nn.Parameter(torch.zeros(1, self.x_embedder.num_patches, hidden_size), requires_grad=False)
self.blocks = nn.ModuleList([
MyDiTBlock_conta(hidden_size, num_heads, mlp_ratio=mlp_ratio, slice_size=slice_size) for _ in range(depth)
])
self.final_layer = MyFinalLayer(hidden_size, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize label embedding table:
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, y=None):
"""
Forward pass of DiT.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
# x = self.embeding(x)
b, ch, h, w = x.shape #
x = x.reshape(b, ch, h*w).transpose(1,2)
x = x + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(t) # (N, D)
y = self.y_embedder(y, self.training) # (N, D)
c = t + y # (N, D)
for block in self.blocks:
x = block(x, c) # (N, T, D)
x = self.final_layer(x, c) # B, HW, 2C # (N, T, patch_size ** 2 * out_channels)
x = x.transpose(1,2).reshape(b, 2*ch, h, w)
return x
def forward_with_cfg(self, x, t, y, cfg_scale):
"""
Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self.forward(combined, t, y)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
grid_h = np.arange(grid_size, dtype=np.float32)
grid_w = np.arange(grid_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
#################################################################################
# DiT Configs #
#################################################################################
def DiT_pro_12_h6_L4(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, slice_size=4, num_heads=6, **kwargs)
def DiT_pro_12_h6_L8(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, slice_size=8, num_heads=6, **kwargs)
def DiT_pro_12_h6_L16(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, slice_size=16, num_heads=6, **kwargs)
def DiT_pro_12_h6_L32(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, slice_size=32, num_heads=6, **kwargs)
def DiT_pro_12_h6_L64(**kwargs):
return DiT(depth=12, hidden_size=384, patch_size=8, slice_size=64, num_heads=6, **kwargs)
DiT_models = {
'DiT-pro-12-h6-L4': DiT_pro_12_h6_L4,
'DiT-pro-12-h6-L8': DiT_pro_12_h6_L8,
'DiT-pro-12-h6-L16': DiT_pro_12_h6_L16,
'DiT-pro-12-h6-L32': DiT_pro_12_h6_L32,
'DiT-pro-12-h6-L64': DiT_pro_12_h6_L64,
}