You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
and then, AutoTimeMixer is not working. Both Ray and Optuna are not working. I wonder why does it happen for auto.
I have tried to use many different parameters to match the tensor size only to fail to solve this problem.
The code and logs are in the section below:
Versions / Dependencies
python 3.10.14
reinstalled neuralforecast today
Reproduction script
H = 288
config1 = {
'n_series': Y_train_df["unique_id"].nunique(),
'input_size': 1440,
# 'down_sampling_layers': 5,
# 'down_sampling_window': 5,
'scaler_type': 'minmax',
'batch_size': 64,
}
config2 = AutoTimeMixer.get_default_config(h=288, backend="optuna", n_series= Y_train_df["unique_id"].nunique() )
def config_o(trial):
return config1
model = AutoTimeMixer(
h = H,
n_series = Y_train_df["unique_id"].nunique(),
config = config1,
loss = MSE(),
valid_loss = MSE(),
verbose = True,
backend = "ray", # the error is the same when it is optuna and use config 2
num_samples = 5,
gpus = 1,
)
nf = NeuralForecast(models=[model], freq='10min')
nf.fit(df=Y_train_df, val_size=288)
ERROR LOG
---------------------------------------------------------------------------
ProcessRaisedException Traceback (most recent call last)
Cell In[3], [line 60](vscode-notebook-cell:?execution_count=3&line=60)
[42](vscode-notebook-cell:?execution_count=3&line=42) model = AutoTimeMixer(
[43](vscode-notebook-cell:?execution_count=3&line=43) h = H,
[44](vscode-notebook-cell:?execution_count=3&line=44) n_series = Y_train_df["unique_id"].nunique(),
(...)
[52](vscode-notebook-cell:?execution_count=3&line=52)
[53](vscode-notebook-cell:?execution_count=3&line=53) )
[58](vscode-notebook-cell:?execution_count=3&line=58) nf = NeuralForecast(models=[model], freq='10min')
---> [60](vscode-notebook-cell:?execution_count=3&line=60) nf.fit(df=Y_train_df, val_size=288)
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:544, in NeuralForecast.fit(self, df, static_df, val_size, sort_df, use_init_models, verbose, id_col, time_col, target_col, distributed_config)
[541](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:541) self._reset_models()
[543](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:543) for i, model in enumerate(self.models):
--> [544](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:544) self.models[i] = model.fit(
[545](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:545) self.dataset, val_size=val_size, distributed_config=distributed_config
[546](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:546) )
[548](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/core.py:548) self._fitted = True
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:429, in BaseAuto.fit(self, dataset, val_size, test_size, random_seed, distributed_config)
[417](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:417) results = self._optuna_tune_model(
[418](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:418) cls_model=self.cls_model,
[419](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:419) dataset=dataset,
(...)
[426](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:426) distributed_config=distributed_config,
[427](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:427) )
[428](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:428) best_config = results.best_trial.user_attrs["ALL_PARAMS"]
--> [429](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:429) self.model = self._fit_model(
[430](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:430) cls_model=self.cls_model,
[431](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:431) config=best_config,
[432](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:432) dataset=dataset,
[433](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:433) val_size=val_size * self.refit_with_val,
[434](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:434) test_size=test_size,
[435](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:435) distributed_config=distributed_config,
[436](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:436) )
[437](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:437) self.results = results
[439](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:439) # Added attributes for compatibility with NeuralForecast core
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:362, in BaseAuto._fit_model(self, cls_model, config, dataset, val_size, test_size, distributed_config)
[358](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:358) def _fit_model(
[359](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:359) self, cls_model, config, dataset, val_size, test_size, distributed_config=None
[360](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:360) ):
[361](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:361) model = cls_model(**config)
--> [362](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:362) model = model.fit(
[363](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:363) dataset,
[364](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:364) val_size=val_size,
[365](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:365) test_size=test_size,
[366](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:366) distributed_config=distributed_config,
[367](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:367) )
[368](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_auto.py:368) return model
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:547, in BaseMultivariate.fit(self, dataset, val_size, test_size, random_seed, distributed_config)
[543](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:543) if distributed_config is not None:
[544](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:544) raise ValueError(
[545](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:545) "multivariate models cannot be trained using distributed data parallel."
[546](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:546) )
--> [547](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:547) return self._fit(
[548](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:548) dataset=dataset,
[549](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:549) batch_size=self.n_series,
[550](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:550) valid_batch_size=self.n_series,
[551](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:551) val_size=val_size,
[552](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:552) test_size=test_size,
[553](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:553) random_seed=random_seed,
[554](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:554) shuffle_train=False,
[555](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:555) distributed_config=None,
[556](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py:556) )
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_model.py:356, in BaseModel._fit(self, dataset, batch_size, valid_batch_size, val_size, test_size, random_seed, shuffle_train, distributed_config)
[354](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_model.py:354) model = self
[355](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_model.py:355) trainer = pl.Trainer(**model.trainer_kwargs)
--> [356](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_model.py:356) trainer.fit(model, datamodule=datamodule)
[357](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_model.py:357) model.metrics = trainer.callback_metrics
[358](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_model.py:358) model.__dict__.pop("_trainer", None)
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:538, in Trainer.fit(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)
[536](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:536) self.state.status = TrainerStatus.RUNNING
[537](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:537) self.training = True
--> [538](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:538) call._call_and_handle_interrupt(
[539](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:539) self, self._fit_impl, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path
[540](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:540) )
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:46, in _call_and_handle_interrupt(trainer, trainer_fn, *args, **kwargs)
[44](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:44) try:
[45](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:45) if trainer.strategy.launcher is not None:
---> [46](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:46) return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
[47](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:47) return trainer_fn(*args, **kwargs)
[49](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:49) except _TunerExitException:
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:144, in _MultiProcessingLauncher.launch(self, function, trainer, *args, **kwargs)
[136](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:136) process_context = mp.start_processes(
[137](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:137) self._wrapping_function,
[138](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:138) args=process_args,
(...)
[141](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:141) join=False, # we will join ourselves to get the process references
[142](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:142) )
[143](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:143) self.procs = process_context.processes
--> [144](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:144) while not process_context.join():
[145](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:145) pass
[147](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py:147) worker_output = return_queue.get()
File ~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py:189, in ProcessContext.join(self, timeout)
[187](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py:187) msg = "\n\n-- Process %d terminated with the following error:\n" % error_index
[188](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py:188) msg += original_trace
--> [189](https://vscode-remote+ssh-002dremote-002btrain2.vscode-resource.vscode-cdn.net/sswoon/TimeSeries/NeuralForecast_test/~/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py:189) raise ProcessRaisedException(msg, error_index, failed_process.pid)
ProcessRaisedException:
-- Process 2 terminated with the following error:
Traceback (most recent call last):
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 76, in _wrap
fn(i, *args)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/multiprocessing.py", line 173, in _wrapping_function
results = function(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 574, in _fit_impl
self._run(model, ckpt_path=ckpt_path)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 981, in _run
results = self._run_stage()
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 1025, in _run_stage
self.fit_loop.run()
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 205, in run
self.advance()
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/fit_loop.py", line 363, in advance
self.epoch_loop.run(self._data_fetcher)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 140, in run
self.advance(data_fetcher)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/training_epoch_loop.py", line 250, in advance
batch_output = self.automatic_optimization.run(trainer.optimizers[0], batch_idx, kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/automatic.py", line 190, in run
self._optimizer_step(batch_idx, closure)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/automatic.py", line 268, in _optimizer_step
call._call_lightning_module_hook(
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 167, in _call_lightning_module_hook
output = fn(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/core/module.py", line 1306, in optimizer_step
optimizer.step(closure=optimizer_closure)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/core/optimizer.py", line 153, in step
step_output = self._strategy.optimizer_step(self._optimizer, closure, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 270, in optimizer_step
optimizer_output = super().optimizer_step(optimizer, closure, model, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 238, in optimizer_step
return self.precision_plugin.optimizer_step(optimizer, model=model, closure=closure, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/plugins/precision/precision.py", line 122, in optimizer_step
return optimizer.step(closure=closure, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/optim/lr_scheduler.py", line 130, in wrapper
return func.__get__(opt, opt.__class__)(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/optim/optimizer.py", line 484, in wrapper
out = func(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/optim/optimizer.py", line 89, in _use_grad
ret = func(self, *args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/optim/adam.py", line 205, in step
loss = closure()
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/plugins/precision/precision.py", line 108, in _wrap_closure
closure_result = closure()
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/automatic.py", line 144, in __call__
self._result = self.closure(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/automatic.py", line 129, in closure
step_output = self._step_fn()
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/loops/optimization/automatic.py", line 317, in _training_step
training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values())
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 319, in _call_strategy_hook
output = fn(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 389, in training_step
return self._forward_redirection(self.model, self.lightning_module, "training_step", *args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 640, in __call__
wrapper_output = wrapper_module(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "seoul/anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/parallel/distributed.py", line 1636, in forward
else self._run_ddp_forward(*inputs, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/parallel/distributed.py", line 1454, in _run_ddp_forward
return self.module(*inputs, **kwargs) # type: ignore[index]
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py", line 633, in wrapped_forward
out = method(*_args, **_kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_base_multivariate.py", line 371, in training_step
output = self(windows_batch)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/models/timemixer.py", line 645, in forward
y_pred = self.forecast(insample_y, x_mark_enc, x_mark_dec)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/models/timemixer.py", line 576, in forecast
x = self.normalize_layers[i](x, "norm")
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_modules.py", line 557, in forward
x = self._normalize(x)
File "anaconda3/envs/sswoon_llama3/lib/python3.10/site-packages/neuralforecast/common/_modules.py", line 588, in _normalize
x = x * self.affine_weight
RuntimeError: The size of tensor a (2) must match the size of tensor b (5) at non-singleton dimension 2
Issue Severity
High: It blocks me from completing my task.
The text was updated successfully, but these errors were encountered:
[plus] Since I have four GPUs, I set gpus = 4 and it seems gpus are not detected and freezed. I had to set gpus = 1 to avoid this problem. According to the document, gpus is the number of gpus that I have. I wonder why this is not working either.
What happened + What you expected to happen
I have tried to use AutoTimeMixer after successfully doing ordinary 'TimeMixer.'
This one worked well when I tried to do it. (ordinary ver)
Note:
Y_train_df["unique_id"].nunique()
= 5 andH = 288
and then, AutoTimeMixer is not working. Both Ray and Optuna are not working. I wonder why does it happen for auto.
I have tried to use many different parameters to match the tensor size only to fail to solve this problem.
The code and logs are in the section below:
Versions / Dependencies
python 3.10.14
reinstalled neuralforecast today
Reproduction script
Issue Severity
High: It blocks me from completing my task.
The text was updated successfully, but these errors were encountered: