forked from h2oai/driverlessai-recipes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
airlines_joined_data_flights_in_out_regression.py
127 lines (111 loc) · 4.88 KB
/
airlines_joined_data_flights_in_out_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""Create augmented airlines datasets for regression"""
from typing import Union, List
from h2oaicore.data import CustomData
import datatable as dt
import numpy as np
import pandas as pd
from h2oaicore.systemutils import user_dir
class AirlinesData(CustomData):
# base_url = "http://stat-computing.org/dataexpo/2009/" # used to work, but 404 now
base_url = "https://0xdata-public.s3.amazonaws.com/data_recipes_data/"
@staticmethod
def create_data(X: dt.Frame = None) -> Union[str, List[str],
dt.Frame, List[dt.Frame],
np.ndarray, List[np.ndarray],
pd.DataFrame, List[pd.DataFrame]]:
import os
from h2oaicore.systemutils_more import download
from h2oaicore.systemutils import config
import bz2
def extract_bz2(file, output_file):
zipfile = bz2.BZ2File(file)
data = zipfile.read()
open(output_file, 'wb').write(data)
temp_path = os.path.join(user_dir(), "recipe_tmp", "airlines")
os.makedirs(temp_path, exist_ok=True)
# specify which years are used for training and testing
training = [2007]
testing = [2008]
# download and unzip files
files = []
for f in ["%d.csv.bz2" % year for year in training + testing]:
link = AirlinesData.base_url + "%s" % f
file = download(link, dest_path=temp_path)
output_file = file.replace(".bz2", "")
extract_bz2(file, output_file)
files.append(output_file)
# parse with datatable
X = dt.rbind(*[dt.fread(x) for x in files])
# add date
date_col = 'Date'
X[:, date_col] = dt.f['Year'] * 10000 + dt.f['Month'] * 100 + dt.f['DayofMonth']
cols_to_keep = ['Date']
# add number of flights in/out for each airport per given interval
timeslice_mins = 60
for name, new_col, col, group in [
("out", "CRSDepTime_mod", "CRSDepTime", "Origin"),
("in", "CRSArrTime_mod", "CRSArrTime", "Dest")
]:
X[:, new_col] = X[:, dt.f[col] // timeslice_mins]
group_cols = [date_col, group, new_col]
new_name = 'flights_%s' % name
flights = X[:, {new_name: dt.count()}, dt.by(*group_cols)]
flights.key = group_cols
cols_to_keep.append(new_name)
X = X[:, :, dt.join(flights)]
# Fill NaNs with 0s
X[dt.isna(dt.f['DepDelay']), 'DepDelay'] = 0
cols_to_keep.extend([
'DepDelay',
'Year',
'Month',
'DayofMonth',
'DayOfWeek',
'CRSDepTime',
'UniqueCarrier',
'FlightNum',
'TailNum',
'CRSElapsedTime',
'Origin',
'Dest',
'Distance',
# Leaks for delay
# 'DepTime',
# 'ArrTime', #'CRSArrTime',
# 'ActualElapsedTime',
# 'AirTime', #'ArrDelay', #'DepDelay',
# 'TaxiIn', #'TaxiOut', #'Cancelled', #'CancellationCode', #'Diverted', #'CarrierDelay',
# #'WeatherDelay', #'NASDelay', #'SecurityDelay', #'LateAircraftDelay',
])
X = X[:, cols_to_keep]
# Join in some extra info
join_files = [('UniqueCarrier', 'carriers.csv', 'Code'),
('Origin', 'airports.csv', 'iata'),
('Dest', 'airports.csv', 'iata'),
('TailNum', 'plane-data.csv', 'tailnum')]
for join_key, file, col in join_files:
file = download('https://0xdata-public.s3.amazonaws.com/data_recipes_data/%s' % file, dest_path=temp_path)
X_join = dt.fread(file, fill=True)
X_join.names = {col: join_key}
X_join.names = [join_key] + [join_key + "_" + x for x in X_join.names if x != join_key]
X_join.key = join_key
X = X[:, :, dt.join(X_join)]
del X[:, join_key]
split = False
if not split:
filename = os.path.join(temp_path,
"flight_delays_regression_%d-%d.jay" % (min(training), max(testing)))
X.to_jay(filename)
return filename
else:
# prepare splits (by year) and create binary .jay files for import into Driverless AI
output_files = []
for condition, name in [
((min(training) <= dt.f['Year']) & (dt.f['Year'] <= max(training)), 'training'),
((min(testing) <= dt.f['Year']) & (dt.f['Year'] <= max(testing)), 'test'),
]:
X_split = X[condition, :]
filename = os.path.join(temp_path, "flight_delays_%s.jay" % name)
X_split.to_jay(filename)
output_files.append(filename)
return output_files