-
Notifications
You must be signed in to change notification settings - Fork 0
/
stage1.tex
1097 lines (937 loc) · 39 KB
/
stage1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{beamer}
\usetheme{Madrid}
\usepackage[utf8]{inputenc}
\usepackage{default}
\usepackage{graphicx}
\usepackage{setspace}
\usepackage{algorithm,algorithmic}
\usepackage{amssymb}
\usepackage{tabularx}
\usepackage{caption}
\usepackage{soul}
\usepackage{textcomp}
\makeatletter
\newcommand\SoulColor{%
\let\set@color\beamerorig@set@color
\let\reset@color\beamerorig@reset@color}
\makeatother
\newcommand*\MyPitem{%
\item[\color{green}\scalebox{0.9}{\textbullet}]}
\newcommand*\MyCitem{%
\item[\color{red}\scalebox{0.9}{\textbullet}]}
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}
}
\title{Numerical Relation Extraction from the Web}
\subtitle{MTP Stage 1 Presentation}
\author[]{Aman Madaan \and Ashish Mittal}
\institute[]{
Indian Institute of Technology Bombay, Mumbai
}
\date{22nd October, 2014}
\begin{document}
\maketitle
\section{Motivation}
%PART 1 : Motivation
\begin{frame}{Entities have Numerical Attributes}
\begin{figure}
\centering
\includegraphics[width = 0.5\textwidth]{images/motivation}
\end{figure}
\end{frame}
\begin{frame}{Entities have Numerical Attributes}
\begin{center}
\includegraphics[scale=0.45]{./imgs/car.pdf}
% car.pdf: 363x272 pixel, 72dpi, 12.81x9.60 cm, bb=0 0 363 272
\end{center}
\end{frame}
\begin{frame}{Entities and Numerical Attributes}
\begin{itemize}
\item For popular entities, finding complete knowledge bases is possible. \pause \\~\\
\item data.worldbank.org, Wikipedia infoboxes, freebase ... \pause \\~\\
\item What about less popular entities? \pause
\begin{itemize}
\item What is the population of Arbit Apartments, Powai? \pause \\~\\
\item What is the GDP of Sugarcane Industry of India? \pause \\~\\
\item Percent of Internet users in Mumbai?
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Motivation}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1366 741,scale=0.25]{./imgs/resultindia.png}
% resultindia.png: 1366x741 pixel, 72dpi, 48.19x26.14 cm, bb=0 0 1366 741
\end{figure}
\end{frame}
\begin{frame}{Motivation}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1366 741,scale=0.25]{./imgs/resultmumbai.png}
% resultindia.png: 1366x741 pixel, 72dpi, 48.19x26.14 cm, bb=0 0 1366 741
\end{figure}
\end{frame}
\begin{frame}{Motivation}
\begin{itemize}
\item Web is huge. \pause \\~\\
\item Probably, there is some page which contains the information we are looking for. \pause \\~\\
\item The way in which you express a fact about an entity depends on the fact, and not the entity. \pause \\~\\
\item We may expect \textbf{the sentence structure} \footnote{More on this in the coming slides} to be similar. \pause
\begin{itemize}
\item Population of India reached 1.3 billion, making it the second largest country in the world. \pause \\~\\
\item Population of Arbit Apartments, Powai reached 1300.
\end{itemize}
\end{itemize}
\end{frame}
\section{Problem Statement}
\begin{frame}{Problem Statement}
\begin{itemize}
\item Given that we know a lot of facts about some entities, can we train extractors that run over the web and pull similar facts about other entities?
\end{itemize}
\end{frame}
\begin{frame}{Problem Statement}
\begin{itemize}
\item The knowledge is scattered in unstructured text on the Web.
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1139 53,scale=0.47]{./images/ex_2.png}
% ex_1.png: 1139x53 pixel, 72dpi, 40.18x1.87 cm, bb=0 0 1139 53
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1139 53,scale=0.30]{./images/ex_3.png}
% ex_1.png: 1139x53 pixel, 72dpi, 40.18x1.87 cm, bb=0 0 1139 53
\end{figure}
\item Can such facts be extracted automatically?
\end{itemize}
\end{frame}
\begin{frame}{Problem Statement}
\begin{itemize}
\item Formally, train extractors that can harness the Web for numerical relations, where relations are 3-tuples linking an entity
to a number \\~\\
\begin{itemize}
\item (India, \textbf{economy}, 1.842 trillion USD) \\~\\
\item (China, \textbf{internet users}, 590.56 million) \\~\\
\item (USA, \textbf{land area}, 2,959,054 square mile)
\end{itemize}
\end{itemize}
\end{frame}
%PART 2 : Relation extraction as a machine learning problem
\section{Relation Extraction as a Machine Learning Problem}
\begin{frame}{Relation Extraction as a Machine Learning Problem}
\begin{itemize}
\item \textbf{Structure} and \textbf{content} of sentences expressing the same relations can be \emph{expected} to be similar. \\~\\
\begin{itemize}
\item The population of Australia is estimated to be 23,622,400 as of 7 October 2014. \\~\\
\item According to an official estimate for 1 June 2014, the population of Russia is 143,800,000.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Relation Extraction as a Machine Learning Problem}
\begin{itemize}
\item \textbf{Structure} and \textbf{content} of sentences expressing the same relations can be \emph{expected} to be similar. \\~\\
\begin{itemize}
\item At 17,075,400 square kilometres, Russia is the largest country in the world. \\~\\
\item With an area of 504,030 $km^{2}$, Spain is the second largest country in Western Europe.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Relation Extraction as a Machine Learning Problem}
\begin{itemize}
\item Redundancy in grammatical features and dependencies of the sentences expressing same relation. \pause
\begin{figure}
\centering
\includegraphics[width = 0.8\textwidth]{images/ex_4}
\end{figure} \pause
\begin{figure}
\centering
\includegraphics[width = 0.8\textwidth]{images/ex_5}
\end{figure}
\end{itemize}
\end{frame}
\begin{frame}{Possible Workflow}
\begin{algorithm}[H]
\setstretch{1.35}
\begin{algorithmic}[1]
\STATE \textbf{Collect enough examples} for each relation so that there are sufficient patterns and enough redundancy to exploit. \\
\STATE \textbf{Extract features} (important keywords, grammatical structure, parse tress, etc.) for these sentences. \\
\STATE \textbf{Train} a multi-class classifier on this training data. \\
\FOR{$sentence\ s \in Corpus $}
\STATE \textbf{Extract} features for $s$.
\STATE \textbf{Predict} the relation using the model for these features.
\STATE \textbf{Store} the fact into a database.
\ENDFOR
\end{algorithmic}
\caption*{Relation Extraction}
\label{alg:seq}
\end{algorithm}
\end{frame}
\begin{frame}{Challenge}
\begin{itemize}
\item Large Corpus ($\sim$16 million sentences), hand labeling is out of question \pause \\~\\
\item Need lots of training data to train high quality extractors \pause \\~\\
\item Is there a middle ground?
\end{itemize}
\end{frame}
\section{Distant Supervision}
%PART 3 DS
\begin{frame}{Distant Supervision} \pause
\begin{itemize}
\item \emph{Weak} Supervision\pause \\~\\
\item Use Heuristics to \textbf{align} a \textbf{table} of facts with the \textbf{corpus} \pause \\~\\
\item \emph{Fuzzy} training data
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision}{Example}
\begin{itemize}
\item Born - In database
\begin{center}
\begin{tabular}{|l|l|}
\hline
Donald Knuth & Wisconsin \\
Srinivasa Ramanujan & Erode \\
Alan Turing & London \\
\hline
\end{tabular}
\end{center}
\item Given Sentences
\begin{itemize}
\item Srinivasa Ramanujan was born in his maternal grandmother’s home in Erode.
\item Srinivasa Ramanujan was born in Erode, Tamilnadu, India, on 22nd December, 1887.
\item Turing's father was with the Indian Civil Service (ICS) at Chhatrapur, Bihar.
\item Alan Turing biopic The Imitation Game named as London film festival opener.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision}{Example}
\begin{itemize}
\item Born - In database
\begin{center}
\begin{tabular}{|l|l|}
\hline
Donald Knuth & Wisconsin \\
\SoulColor\hl{Srinivasa Ramanujan} & \SoulColor\hl{Erode} \\
Alan Turing & London \\
\hline
\end{tabular}
\end{center}
\item Given Sentences
\setbeamercolor{normal text}{fg=gray,bg=}
\setbeamercolor{alerted text}{fg=black,bg=}
\usebeamercolor{normal text}
\begin{itemize}
\item \alert<+> {\SoulColor\hl{Srinivasa Ramanujan} was born in his maternal grandmother’s home in \SoulColor\hl{Erode}.} \alert{LABEL : BornIn} \checkmark
\item Srinivasa Ramanujan was born in Erode, Tamilnadu, India, on 22nd December, 1887.
\item Turing's father was with the Indian Civil Service (ICS) at Chhatrapur, Bihar.
\item Alan Turing biopic The Imitation Game named as London film festival opener.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision}{Example}
\begin{itemize}
\item Born - In database
\begin{center}
\begin{tabular}{|l|l|}
\hline
Donald Knuth & Wisconsin \\
\SoulColor\hl{Srinivasa Ramanujan} & \SoulColor\hl{Erode} \\
Alan Turing & London \\
\hline
\end{tabular}
\end{center}
\item Given Sentences
\setbeamercolor{normal text}{fg=gray,bg=}
\setbeamercolor{alerted text}{fg=black,bg=}
\usebeamercolor{normal text}
\begin{itemize}
\item Srinivasa Ramanujan was born in his maternal grandmother’s home in Erode. \checkmark
\item \alert<+> {\SoulColor\hl{Srinivasa Ramanujan} was born in \SoulColor\hl{Erode}, Tamilnadu, India, on 22nd December, 1887.} \checkmark
\item Turing's father was with the Indian Civil Service (ICS) at Chhatrapur, Bihar.
\item Alan Turing biopic The Imitation Game named as London film festival opener.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision}{Example}
\begin{itemize}
\item Born - In database
\begin{center}
\begin{tabular}{|l|l|}
\hline
Donald Knuth & Wisconsin \\
Srinivasa Ramanujan & Erode \\
\SoulColor\hl{Alan Turing} & \SoulColor\hl{London} \\
\hline
\end{tabular}
\end{center}
\item Given Sentences
\setbeamercolor{normal text}{fg=gray,bg=}
\setbeamercolor{alerted text}{fg=black,bg=}
\usebeamercolor{normal text}
\begin{itemize}
\item Srinivasa Ramanujan was born in his maternal grandmother’s home in Erode. \checkmark
\item Srinivasa Ramanujan was born in Erode, Tamilnadu, India, on 22nd December, 1887. \checkmark
\item \alert<+> {\SoulColor\hl{Turing's} father was with the Indian Civil Service (ICS) at Chhatrapur, Bihar} \textbf{X}
\item Alan Turing biopic The Imitation Game named as London film festival opener.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision}{Example}
\begin{itemize}
\item Born - In database
\begin{center}
\begin{tabular}{|l|l|}
\hline
Donald Knuth & Wisconsin \\
Srinivasa Ramanujan & Erode \\
\SoulColor\hl{Alan Turing} & \SoulColor\hl{London} \\
\hline
\end{tabular}
\end{center}
\item Given Sentences
\setbeamercolor{normal text}{fg=gray,bg=}
\setbeamercolor{alerted text}{fg=black,bg=}
\usebeamercolor{normal text}
\begin{itemize}
\item Srinivasa Ramanujan was born in his maternal grandmother’s home in Erode. \checkmark
\item Srinivasa Ramanujan was born in Erode, Tamilnadu, India, on 22nd December, 1887. \checkmark
\item Turing's father was with the Indian Civil Service (ICS) at Chhatrapur, Bihar. \textbf{X}
\item \alert<+> {\SoulColor\hl{Alan Turing} biopic The Imitation Game named as \SoulColor\hl{London} film festival opener.} \checkmark
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision}{Example}
\begin{itemize}
\item Born - In database
\begin{center}
\begin{tabular}{|l|l|}
\hline
Donald Knuth & Wisconsin \\
Srinivasa Ramanujan & Erode \\
\SoulColor\hl{Alan Turing} & \SoulColor\hl{London} \\
\hline
\end{tabular}
\end{center}
\item Given Sentences
\setbeamercolor{normal text}{fg=gray,bg=}
\setbeamercolor{alerted text}{fg=black,bg=}
\usebeamercolor{normal text}
\begin{itemize}
\item Srinivasa Ramanujan was born in his maternal grandmother’s home in Erode. \checkmark
\item Srinivasa Ramanujan was born in Erode, Tamilnadu, India, on 22nd December, 1887. \checkmark
\item Turing's father was with the Indian Civil Service (ICS) at Chhatrapur, Bihar. \textbf{X}
\item \alert<+> {\SoulColor\hl{Alan Turing} biopic The Imitation Game named as \SoulColor\hl{London} film festival opener.\checkmark {\color{red}FALSE POSITIVE}}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Distant Supervision} \pause
\begin{itemize}
\item[\textcolor{red}{$\bullet$}] \emph{Distant supervision assumption:} If an entity pair $E$ appears with a relation $R$ in the knowledge base, then any sentence containing $E$ \textbf{will} express $R$ \pause \\~\\
\item[\textcolor{green}{$\bullet$}] Can quickly label huge corpora \pause \\~\\
\item[\textcolor{red}{$\bullet$}] Same entity pair can match different relations (Founded(Steve Jobs, Apple) or CEO(Steve Jobs, Apple)) \pause \\~\\
\item[\textcolor{red}{$\bullet$}] False positives, may lead to the model learning wrong patterns for relations (E.g. ``Film Festival'' an Indicator of BornIn)
\end{itemize}
\end{frame}
\section{Distant Supervision Techniques}
%PART 4: MultiR
\begin{frame}{Distant Supervision Techniques}
\begin{itemize}
\item First paper in 1999, almost every possibility explored
\end{itemize}
\begin{center}
\includegraphics[scale=0.12]{./imgs/dsreadings.pdf}
% dsreadings.pdf: 2381x1285 pixel, 72dpi, 84.00x45.33 cm, bb=0 0 2381 1285
\end{center}
\end{frame}
\begin{frame}{Distant Supervision Techniques}
\begin{itemize}
\item First paper in 1999, \emph{almost} every possibility explored
\end{itemize}
\begin{center}
\includegraphics[scale=0.12]{./imgs/us.pdf}
% us.pdf: 2381x1285 pixel, 72dpi, 84.00x45.33 cm, bb=0 0 2381 1285
\end{center}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode1.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode2.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode3.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode4.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode5.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode6.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode7.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
\begin{frame}{Relation Extraction Using MultiR}{From \url{raphaelhoffmann.com/publications}}
\begin{figure}[h]
\centering
\includegraphics[scale=0.40]{./imgs/multirmode8.pdf}
% multirmode.1.pdf: 720x540 pixel, 72dpi, 25.40x19.05 cm, bb=0 0 720 540
\end{figure}
\end{frame}
% %PART 5: TAC Submission
\section{TAC Submission}
\begin{frame}{Cold Start Knowledge Base Population, 2014}
\begin{itemize}
\item Knowledge Base Population (KBP) track of TAC encourages the development of systems that can match entities mentioned in natural texts with those
appearing in a knowledge base and extract novel information about entities from a document collection and add it to a new or existing knowledge base. \pause \\~\\
\item Some example relations:
\begin{itemize}
\item children of \\~\\
\item city of birth \\~\\
\item shareholders \\~\\
\item countries of residence
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Cold Start Knowledge Base Population}
\begin{itemize}
\item Modeled the problem using distant supervision. \\~\\
\item Used Freebase as an existing Knowledge base. \\~\\
\item \textbf{Freebase: }Freebase is a large collaborative knowledge base consisting of metadata composed mainly by its community members. \\~\\
\item It is an online collection of structured data harvested from many sources, including individual, user-submitted wiki contributions.
\end{itemize}
\end{frame}
\begin{frame}{Corpus}
\begin{itemize}
\item The TAC corpus consisted of three type of documents: \pause \\~\\
\begin{itemize}
\item \textbf{discussion forums } 99,063 English discussion forum documents selected from the BOLT Phase 1 discussion forums source data releases. Each forum includes at least 5 posts. \pause \\~\\
\item \textbf{newswire } 1,000,257 documents selected from English Gigaword Fifth Edition. \pause \\~\\
\item \textbf{web} 999,999 English web documents selected from various GALE web collections. \pause \\~\\
\end{itemize}
\item We have submitted the knowledge base populated using our techniques on the above corpus and waiting for results.
\end{itemize}
\end{frame}
\section{Numerical Relation Extraction}
%%THIS IS PART 6 : numerical relation extraction using distant supervision
\begin{frame}{Distant supervision for Numerical Relation Extraction}{Knowledge Base}
\begin{itemize}
\item Derived from \url{data.worldbank.org}, 4371979 numerical facts about 249 countries, 1281 attributes
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
Freebase Entity& Value & Relation\\
\hline
/m/04g5k&3126000130&Electricity Production\\
/m/02k8k&1969.179&$CO_{2}$ Emission\\
/m/06nnj&332315&Total Population\\
/m/019rg5&55.020073&Life Expectancy\\
/m/05sb1&19974.148&$CO_{2}$ Emission\\
/m/05v8c&10000000000&Electricity Production\\
/m/03spz&7639000100&Electricity Production\\
/m/06vbd&44249.688&$CO_{2}$ Emission\\
/m/0d060g&51.3&Internet Users(\%)\\
/m/05qkp&62.298927&Life Expectancy\\
\hline
\end{tabular}
\end{center}
\end{itemize}
\end{frame}
\begin{frame}{Selected Relations}
\begin{center}
\begin{tabular}{|l|l|}
\hline
Relation Name & Relation Code \\
\hline
Land area (sq. km)&AG.LND.TOTL.K2\\
Foreign direct investment, net (current US\$)&BN.KLT.DINV.CD\\
Goods exports (current US\$)&BX.GSR.MRCH.CD\\
Electricity production (kWh)&EG.ELC.PROD.KH\\
CO2 emissions (kt)&EN.ATM.CO2E.KT\\
Pump price for diesel fuel (US\$ per liter)&EP.PMP.DESL.CD\\
Inflation, consumer prices (annual \%)&FP.CPI.TOTL.ZG\\
Internet users (per 100 people)&IT.NET.USER.P2\\
GDP (current US\$)&NY.GDP.MKTP.CD\\
Life expectancy at birth, total (years)&SP.DYN.LE00.IN\\
Population (Total)&SP.POP.TOTL\\
\hline
\end{tabular}
\end{center}
\end{frame}
\begin{frame}{Corpus}
\begin{itemize}
\item Subset of the tac corpus \\~\\
\item 268, 036 Documents, X sentences having a country and a number \\~\\
\item List of countries augmented manually by adding all possible synonyms (Dutch, Netherlands) and inflections (Ireland, Irish)
\end{itemize}
\end{frame}
\begin{frame}{Distant supervision process for numerical relation extraction}
\begin{itemize}
\item Extract a country and number from a sentence, go to kb and check if there is a match. \\~\\
\item Can be creative during matching: \\~\\
\begin{itemize}
\item Distance based matching \\~\\
\item Time based matching
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{First Attempt: Vanilla Matching}
\begin{center}
\includegraphics{./imgs/simple.pdf}
% simple.pdf: 363x272 pixel, 72dpi, 12.81x9.60 cm, bb=0 0 363 272
\end{center}
\end{frame}
%TODO : Add distribution of matches per relation
\begin{frame}{Vanilla Matching}
\begin{itemize}
\item A large number of matches
\item Most of them false positives
\end{itemize}
\end{frame}
\begin{frame}{Vanilla Matching: Results}
\begin{center}
\resizebox{\linewidth}{!}{% Resize table to fit within \linewidth horizontally
\begin{tabular}{|l|l|l|l|l|}
\hline
Relation&Total Matches&Sampled Matches&True Matches&Precision(\%)\\
\hline
Land Area&1884&15&\textbf{1}&\textbf{6.7}\\
Foreign Direct Investment&0&0&0&0\\
Goods Export&0&0&0&0\\
Electricity Production&381&10&0&0\\
$CO_{2}$ Emission&0&0&0&0\\
Diesel Prices&8491&15&0&0\\
Inflation(\%)&8689&15&0&0\\
Internet Users(\%)&182319&40&0&0\\
GDP(\$)&0&0&0&0\\
Life Expectancy&267&10&0&0\\
Total Population&0&0&0&0\\
\hline
\end{tabular}}
\end{center}
\end{frame}
\begin{frame}{Sample Matches for Vanilla Matching}
\begin{table}
\tiny
\centering
\begin{tabularx}{\textwidth}{|l|l|l|>{\raggedright}X|}
\hline
\textbf{Country} & \textbf{Relation} & \textbf{Value} & \textbf{Sentence}\tabularnewline
\hline
South Africa & Internet Users(\%) & 24 & Montjane, \textbf{24}, was crowned on Sunday evening at the Superbowl at Sun City, in \textbf{South Africa}'s North West province.\tabularnewline
\hline
Croatia & Inflation & 500 & \textbf{Croatian} police say more than \textbf{500} guns turned in after the country's 1991 war were stolen from a police depot and sold on the black market.\tabularnewline
\hline
France & Life Expectancy & 75 & \textbf{France}: Hugo Lloris, Eric Abidal, Patrice Evra, William Gallas, Bacary Sagna, Abou Diaby, Yoann Gourcuff (Florent Malouda, \textbf{75}), Jeremy Toulalan, Nicolas Anelka (Thierry Henry, 72), Sidney Govou (Andre-Pierre Gignac, 85), Franck Ribery.\tabularnewline
\hline
France & Diesel prices & 1.72 & Lotte Friis of Denmark won the women's 800 freestyle in 8:23.27, followed at 0.73 seconds by Ophelie Cyriell Etienne of \textbf{France} and Federica Pellegrini of Italy, \textbf{1.72} seconds back.\tabularnewline
\hline
Bermuda & Land Area(sq. km) & 50 & Forecasters were also closely tracking the path of Tropical Storm Fiona about 360 miles (580 km) south of \textbf{Bermuda}, with wind speeds of up to \textbf{50} miles (85 km) per hour.\tabularnewline
\hline
\end{tabularx}
\end{table}
\end{frame}
\begin{frame}{Key Observations on vanilla matching}
\begin{itemize}
\item Units for precision, not just recall \\~\\
\item Dates and Sports articles lead to a lot of false positives \\~\\
\item Small numbers generate larger false positives; finer numbers generate fewer false positives. \\~\\
\begin{itemize}
\item Intuitively, it makes sense that we'll see a lot of 2s, 3s, 71s in different contexts than 1,000,232,112. Due to similar reasons, getting an exact match for 23.14152 is more difficult than matching 23. \\~\\
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{False Positives}{Numbers are weak entities}
\begin{itemize}
\item Vanilla numerical relation matching is bound to attract humoungous amounts of false positives; \pause \\~\\
\item Stems from the fact that numbers don't have an identity of their own. \pause \\~\\
\item Consider {\SoulColor\hl{India}} and {\SoulColor\hl{Mumbai}} Vs. {\SoulColor\hl{India}} and {\SoulColor\hl{19}} \pause \\~\\
\item {\SoulColor\hl{Mumbai}} is a strong entity, {\SoulColor\hl{19}} is a \textbf{weak} entity.
\end{itemize}
\end{frame}
\begin{frame}{False Positives}{Numbers are weak entities}
\begin{itemize}
\item Compare the number of sentences in which {\SoulColor\hl{India}} and {\SoulColor\hl{Mumbai}} appear together, vs the number of sentences
in which {\SoulColor\hl{India}} and {\SoulColor\hl{19}} appear together. \pause \\~\\
\item Just {\SoulColor\hl{19}} can be appear with India in several contexts: \pause \\~\\
\begin{itemize}
\item Internet user \% \pause
\item Billion dollars invested by a company \pause
\item \% of people below the poverty line \pause
\item date (if we are not careful) \pause
\item number of medals won by Indian athletes... \pause \\~\\
\end{itemize}
\item Can we expect the situation to be even worse for certain types of numbers?
\end{itemize}
\end{frame}
%PART 7 : Units
\section{Units in Numerical Relation Extraction}
\begin{frame}
\frametitle{Numbers are incomplete without units} \pause
\begin{itemize}
\item Apart from being a constant quantity, a number usually makes sense when presented along with units. \pause
\begin{figure}
\centering
\includegraphics[width = 1.0\textwidth]{images/ex_6}
\end{figure}
\pause
\item Units help in improving recall. \pause \\~\\
\begin{itemize}
\item In above example 1.842 as number alone would not match with the fact regarding economy in knowledge base. \pause \\~\\
\item But with the unit trillion USD, we can normalize the value and then it would match exisiting facts in knowledge base.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Numbers are incomplete without units} \pause
\begin{itemize}
\item Apart from being a constant quantity, a number usually makes sense when presented along with units. \pause \\~\\
\begin{figure}
\centering
\includegraphics[width = 1.0\textwidth]{images/ex_6}
\end{figure}
\pause
\item Units help in improving recall. \pause \\~\\
\begin{itemize}
\item In above example 1.842 as number alone would not match with the fact regarding economy in knowledge base. \pause \\~\\
\item But with the unit trillion USD, we can normalize the value and then it would match exisiting facts in knowledge base. \\~\\
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Numbers are incomplete without units}
\begin{figure}
\centering
\includegraphics[width = 1.0\textwidth]{images/ex_6}
\end{figure}
\begin{itemize}
\item Units help in reducing false positives and hence improving precision. \pause \\~\\
\begin{itemize}
\item If there is a fact, e.g, \textbf{inflation(India, 1.842\%)} in knowledge base, then ignoring units can cause an incorrect match which leads in learning towards noisy patterns. \\~\\
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Unit Extraction is not easy!} \pause
\begin{itemize}
\item Different ways to represent a single unit. \pause \\~\\
\begin{itemize}
\item Tunisia occupies an area of 163,610 \textbf{square kilometres}, of which 8,250 are water. \pause \\~\\
\item With an area of about 9.6 \textbf{million $km^{2}$}, the People's Republic of China is the 3rd largest country in total area behind Russia and Canada, and very similar to the United States. \\~\\
\end{itemize}
\pause
\item Multiple units to represent a single numerical fact. \pause \\~\\
\begin{itemize}
\item Vatican City, a walled enclave within the city of Rome, with an area of approximately \textbf{44 hectares} \textbf{(110 acres)}, and a population of 842, is the smallest internationally recognized independent state in the world by both area and population. \\~\\
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Overview of Unit Extraction System} \pause
\begin{itemize}
\item A discriminative context free grammmar with scores
attached to each possible production in the grammar. \pause \\~\\
\item A production P in the grammar is of the form $ R ::= R_{1} R_{2}$ , scored as
\begin{equation*}
score(P) = \textbf{w . f}(P, x, i, j, k),
\end{equation*}
where $(i,j)$ and $(j+1,k)$ are text spans in $x$ that $R_{1}$ and $R_{2}$
cover.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Overview of Unit Extraction System}
\begin{itemize}
\item Some of the features that grammar uses to assign the best scores to various
parses are as belows: \pause \\~\\
\begin{itemize}
\item Matches with Unit Catalog \pause \\~\\
\item Lexical Clues \pause \\~\\
\item Relative Frequency - Prior of the word to be present as unit, then as an
non-unit word. This is derived from WordNet ontologies. \pause \\~\\
\item Co-occurrence statistics - presence of strongly co-occuring words in the
text can help in disambiguating the various candidate units
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Units Based Matching: Results}
\begin{center}
\resizebox{\linewidth}{!}{% Resize table to fit within \linewidth horizontally
\begin{tabular}{|l|l|l|l|l|}
\hline
Relation&Total Matches&Sampled Matches&True Matches&Precision(\%)\\
\hline
\textbf{Land Area} &98 & 40 & 32 &80\\
Foreign Direct Investment & 791 & 40& 1&2.5\\
Goods Export&816&40&3&7.5\\
Electricity Production&19&19&0&0\\
$CO_{2}$ Emission&196&40&2&5\\
Diesel Prices&2&2&2&100\\
Inflation(\%)&27598&40&0&0\\
Internet Users(\%)&24639&40&0&0\\
GDP(\$)&1790&40&0&0\\
Life Expectancy&3081&40&0&0\\
\textbf{Total Population}&5225&40&11&27.5\\
\hline
\end{tabular}}
\end{center}
\end{frame}
\begin{frame}{Sample Matches for Unit Based Matching}
\begin{table}
\centering
\tiny
\begin{tabularx}{\textwidth}{|l|l|l|>{\raggedright}X|}
\hline
\textbf{Country} & \textbf{Relation} & \textbf{Value} & \textbf{Sentence}\tabularnewline
\hline
Lebanon & Land Area & $1.02 x 10^{11}$ sq m & \textbf{Lebanon} lies in the eastern Mediterranean and covers about \textbf{4,030 square miles} (10,450 square kilometers) -- smaller than the U.S. state of Connecticut.\tabularnewline
\hline
Russia & Goods Export & $ 10^{10}$ USD & The IMF agrees to offer a loan of \textbf{US\$10.2 billion} to \textbf{Russia} over the next three years to help Russians transform their economy.\tabularnewline
\hline
Australia & Internet Users(\%) & 0.6\% & South Korea's main index added \textbf{0.6 percent}, China's Shanghai's benchmark climbed 1.5 percent and \textbf{Australia}'s index advanced 1.1 percent.\tabularnewline
\hline
Israel & Internet Users(\%) & 20.0\% & \textbf{Israel}'s Arab community numbers 1.3 million, about \textbf{20 percent} of the population.\tabularnewline
\hline
Pakistan & Life Expectancy(years) & 60 & Why does a small elite still control vast swaths of land more than \textbf{60 years} after \textbf{Pakistan} became a nation?\tabularnewline
\hline
\end{tabularx}
\end{table}
\end{frame}
\begin{frame}{Key Observations on Unit Based Matching}
\begin{itemize}
\item When it comes to numbers, distant supervision assumption is weak as can be evident from the examples above.
Since second argument of a relation is number, this number can be related to the entity in multiple number of ways, which then gives lot of false positives.
\item For the attributes like inflation, percentage of internet user, whose values are in percentage are affected by stock data that is heavily present in news corpus.
\item For relations FDI, Goods Export, GDP we have almost similar values for three values.Hence a (entity, number) pair matches all of the three relations. We can improve our matching function for closely related attributes.
\end{itemize}
\end{frame}
%PART 8 : Keywords
\begin{frame}{A case for Keywords}
\begin{itemize}
\item A large number of false matches had no reference to the relation involved.
\item Eg. No mention of Population in the following matches:
\begin{itemize}
\item The website of \SoulColor\hl{China's} Ministry of Defense (MOD) has attracted around \SoulColor\hl{1.25} billion visits in the three months since its opening, with the United States topping the source countries for foreign visits, website editor-in-chief Ji Guilin said.
\item Insulza, for his part, said the Organization of American States expects to raise \SoulColor\hl{10 million} dollars for \SoulColor\hl{Haiti's} recovery.
\item Koloini and others brought 10 million euros, probably \SoulColor\hl{15 million}, back from \SoulColor\hl{Iraq} at the time, Falter quoted from the diary.
\end{itemize}
\item No reference to Co2 emission:
\begin{itemize}
\item \SoulColor\hl{China's} iron ore imports surged 41.6 percent to \SoulColor\hl{627.8 million tonnes} in 2009, with the value falling 17.4 percent as prices were hit by the global downturn, customs data shows.
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{A case for Keywords}
\begin{exampleblock}{Good News}
Sentences expressing a numerical relation can be expected to have keywords that denote the relation
\end{exampleblock}
\begin{itemize}
\item Take all the labeled sentences, prune out sentences that don't have atleast one of the relevant keywords
\end{itemize}
\begin{table}
\tiny
\begin{tabular}{|l|l|}
\hline
Internet User \% & "Internet" \\
Land Area & "area", "land", "land area" \\
Population &"Population" \\
Diesel & "diesel" \\
GDP &"Gross domestic", "GDP" \\
CO2 &"Carbon", "Carbon Emission", "CO2" \\
Inflation & "Inflation", "Price Rise" \\
FDI & "Foreign", "FDI" \\
Goods Export & "goods" \\
Life Expectancy & "life", "life expectancy" \\
Electricity Production & "Electricity" \\
\hline
\end{tabular}
\end{table}
\end{frame}
\begin{frame}{A case for Keywords}
\begin{itemize}
\item Numbers are the second entity in our setup (Relation(Country, Number)) \\~\\
\item Unlike real world entities, numbers don't have an identity of their own, sentences should have words (keywords!) indicating what the number stands for \\~\\
\item Manual inspection of 400 sentences pruned out after applying keyword based filter backs this conjecture, not even one false negative \\~\\
\item The keywords are created manually, can this process be automated?
\end{itemize}
\end{frame}
\begin{frame}{Keywords + Units Based Matching: Results}
\begin{center}
\resizebox{\linewidth}{!}{% Resize table to fit within \linewidth horizontally
\begin{tabular}{|l|l|l|l|l|}
\hline
Relation&Total Matches&Sampled Matches&True Matches&Precision(\%)\\
\hline
\textbf{Land Area}&61&40&\textbf{30}&\textbf{75}\\
Foreign Direct Investment&8&0&0&0\\
Goods Export&4&4&0&0\\
Electricity Production&0&0&0&0\\
$CO_{2}$ Emission&16&16&2&12.5\\
Diesel Prices&2&2&2&100\\
\textbf{Inflation(\%)}&3853&40&25&62.5\\
Internet Users(\%)&308&40&7&17.5\\
GDP(\$)&0&0&0&0\\
\textbf{Life Expectancy}&99&40&15&37.5\\
\textbf{Total Population}&607&40&24&60\\
\hline
\end{tabular}}
\end{center}
\end{frame}
\begin{frame}{Sample Matches for Keywords Based Matching}
\begin{table}
\centering
\tiny
\begin{tabularx}{\textwidth}{|l|l|l|>{\raggedright}X|}
\hline
\textbf{Country} & \textbf{Relation} & \textbf{Value} & \textbf{Sentence}\tabularnewline
\hline
India & Land Area & $3.00 x 10^{12}$ sq m & With an \textit{\textbf{area}} of \textbf{2.98 million square km}, \textbf{India} is the largest country in South Asia.\tabularnewline
\hline
Bulgaria & $CO_{2}$ Emission & $ 6 x 10^{7}$ ton & Depending on the Commission's ruling on the country's challenging of the quotas, \textbf{Bulgaria} would end up with at least \textbf{60 million tonnes} of \textbf{\textit{CO2}} or 60 million EUAs to trade, which are worth several hundred million euros.\tabularnewline
\hline
Malawi & Life Expectancy(years) & 40 years & \textbf{Malawi}, like other southern African countries, has seen its \textit{\textbf{life expectancy}} drop from about 60 years in the early 1990s to below \textbf{40 years} presently due to the HIV-AIDS pandemic.\tabularnewline
\hline
Iceland & Total Population & 330000 & home to \textbf{320,000} \textit{\textbf{people}} , \textbf{Iceland} officially apply to join the EU at the end of July. \tabularnewline
\hline
Japan & Inflation(\%) & 8.2\% & \textbf{Japan}'s economy decline by \textbf{8.4 percent} , after adjustment for \textit{\textbf{inflation}} , from the first quarter of 2008 to the first quarter of 2009.\tabularnewline
\hline
\end{tabularx}
\end{table}
\end{frame}
\begin{frame}{Precision Comparison}
\begin{figure}
\centering
\includegraphics[width = 1.0\textwidth]{images/results}
\end{figure}
\end{frame}
\begin{frame}{Relative Recall}
\begin{itemize}
\item Different Heurisitic improved some aspect of matching for distant supervision. \\~\\
\item But we need to be careful, that with agressive pruning of incorrect sentences, we are not leaving some good sentences. \\~\\
\item So for all the Heuristics, we calculate the percentage of true matches that were extracted by each Heuristics. We call this \textbf{Relative Recall}
\end{itemize}
\begin{center}
\begin{tabular}{|l|l|}
\hline
Total Sentences for evaluation & 676 \\
\hline
Total True Positives & 138 \\
\hline
Vanilla Matching & 2 \\
Units + Distance Based Matching & 79 \\
Keywords + Units + Distance Based Matching & 112 \\
\hline