Skip to content

Latest commit

 

History

History
292 lines (231 loc) · 8.91 KB

0046.全排列.md

File metadata and controls

292 lines (231 loc) · 8.91 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

46.全排列

题目链接:https://leetcode-cn.com/problems/permutations/

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

思路

如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) 可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。

此时我们已经学习了77.组合问题131.分割回文串78.子集问题,接下来看一看排列问题。

相信这个排列问题就算是让你用for循环暴力把结果搜索出来,这个暴力也不是很好写。

所以正如我们在关于回溯算法,你该了解这些!所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?

因为一些问题能暴力搜出来就已经很不错了!

我以[1,2,3]为例,抽象成树形结构如下:

46.全排列

回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说[1,2] 和[2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.size()) {
    result.push_back(path);
    return;
}
  • 单层搜索的逻辑

这里和77.组合问题131.切割问题78.子集问题最大的不同就是for循环里不用startIndex了。

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.size(); i++) {
    if (used[i] == true) continue; // path里已经收录的元素,直接跳过
    used[i] = true;
    path.push_back(nums[i]);
    backtracking(nums, used);
    path.pop_back();
    used[i] = false;
}

整体C++代码如下:

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (used[i] == true) continue; // path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

总结

大家此时可以感受出排列问题的不同:

  • 每层都是从0开始搜索而不是startIndex
  • 需要used数组记录path里都放了哪些元素了

排列问题是回溯算法解决的经典题目,大家可以好好体会体会。

其他语言版本

Java:

class Solution {

    List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
    boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        if (nums.length == 0){
            return result;
        }
        used = new boolean[nums.length];
        permuteHelper(nums);
        return result;
    }

    private void permuteHelper(int[] nums){
        if (path.size() == nums.length){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++){
            if (used[i]){
                continue;
            }
            used[i] = true;
            path.add(nums[i]);
            permuteHelper(nums);
            path.removeLast();
            used[i] = false;
        }
    }
}

Python:

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        res = []  #存放符合条件结果的集合
        path = []  #用来存放符合条件的结果
        used = []  #用来存放已经用过的数字
        def backtrack(nums,used):
            if len(path) == len(nums):
                return res.append(path[:])  #此时说明找到了一组
            for i in range(0,len(nums)):
                if nums[i] in used:
                    continue  #used里已经收录的元素,直接跳过
                path.append(nums[i])
                used.append(nums[i])
                backtrack(nums,used)
                used.pop()
                path.pop()
        backtrack(nums,used)
        return res

Python(优化,不用used数组):

class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        res = []  #存放符合条件结果的集合
        path = []  #用来存放符合条件的结果
        def backtrack(nums):
            if len(path) == len(nums):
                return res.append(path[:])  #此时说明找到了一组
            for i in range(0,len(nums)):
                if nums[i] in path:  #path里已经收录的元素,直接跳过
                    continue
                path.append(nums[i])
                backtrack(nums)  #递归
                path.pop()  #回溯
        backtrack(nums)
        return res

Go:

var res [][]int
func permute(nums []int) [][]int {
	res = [][]int{}
	backTrack(nums,len(nums),[]int{})
	return res
}
func backTrack(nums []int,numsLen int,path []int)  {
	if len(nums)==0{
		p:=make([]int,len(path))
		copy(p,path)
		res = append(res,p)
	}
	for i:=0;i<numsLen;i++{
		cur:=nums[i]
		path = append(path,cur)
		nums = append(nums[:i],nums[i+1:]...)//直接使用切片
		backTrack(nums,len(nums),path)
		nums = append(nums[:i],append([]int{cur},nums[i:]...)...)//回溯的时候切片也要复原,元素位置不能变
		path = path[:len(path)-1]

	}
}

Javascript:

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function(nums) {
    const res = [], path = [];
    backtracking(nums, nums.length, []);
    return res;
    
    function backtracking(n, k, used) {
        if(path.length === k) {
            res.push(Array.from(path));
            return;
        }
        for (let i = 0; i < k; i++ ) {
            if(used[i]) continue;
            path.push(n[i]);
            used[i] = true; // 同支
            backtracking(n, k, used);
            path.pop();
            used[i] = false;
        }
    }
};