forked from SizheAn/PanoHead
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_videos_proj_withseg.py
297 lines (243 loc) · 13.4 KB
/
gen_videos_proj_withseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
''' Generate videos using pretrained network pickle.
Code adapted from following paper
"Efficient Geometry-aware 3D Generative Adversarial Networks."
See LICENSES/LICENSE_EG3D for original license.
'''
import os
import re
from typing import List, Optional, Tuple, Union
import click
import dnnlib
import imageio
import numpy as np
import scipy.interpolate
import torch
from tqdm import tqdm
import mrcfile
import legacy
from camera_utils import LookAtPoseSampler
from torch_utils import misc
#----------------------------------------------------------------------------
def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True):
batch_size, channels, img_h, img_w = img.shape
if grid_w is None:
grid_w = batch_size // grid_h
assert batch_size == grid_w * grid_h
if float_to_uint8:
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = img.reshape(grid_h, grid_w, channels, img_h, img_w)
img = img.permute(2, 0, 3, 1, 4)
img = img.reshape(channels, grid_h * img_h, grid_w * img_w)
if chw_to_hwc:
img = img.permute(1, 2, 0)
if to_numpy:
img = img.cpu().numpy()
return img
def create_samples(N=256, voxel_origin=[0, 0, 0], cube_length=2.0):
# NOTE: the voxel_origin is actually the (bottom, left, down) corner, not the middle
voxel_origin = np.array(voxel_origin) - cube_length/2
voxel_size = cube_length / (N - 1)
overall_index = torch.arange(0, N ** 3, 1, out=torch.LongTensor())
samples = torch.zeros(N ** 3, 3)
# transform first 3 columns
# to be the x, y, z index
samples[:, 2] = overall_index % N
samples[:, 1] = (overall_index.float() / N) % N
samples[:, 0] = ((overall_index.float() / N) / N) % N
# transform first 3 columns
# to be the x, y, z coordinate
samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2]
samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1]
samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0]
num_samples = N ** 3
return samples.unsqueeze(0), voxel_origin, voxel_size
#----------------------------------------------------------------------------
def gen_interp_video(G, mp4: str, ws, w_frames=60*4, kind='cubic', grid_dims=(1,1), num_keyframes=None, wraps=2, psi=1, truncation_cutoff=14, cfg='FFHQ', image_mode='image', gen_shapes=False, device=torch.device('cuda'), **video_kwargs):
grid_w = grid_dims[0]
grid_h = grid_dims[1]
if num_keyframes is None:
if len(ws) % (grid_w*grid_h) != 0:
raise ValueError('Number of input seeds must be divisible by grid W*H')
num_keyframes = len(ws) // (grid_w*grid_h)
camera_lookat_point = torch.tensor([0, 0, 0.2], device=device) if cfg == 'FFHQ' else torch.tensor([0, 0, 0], device=device)
cam2world_pose = LookAtPoseSampler.sample(3.14/2, 3.14/2, camera_lookat_point, radius=2.7, device=device)
intrinsics = torch.tensor([[4.2647, 0, 0.5], [0, 4.2647, 0.5], [0, 0, 1]], device=device)
c = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
c = c.repeat(len(ws), 1)
# ws = G.mapping(z=zs, c=c, truncation_psi=psi, truncation_cutoff=truncation_cutoff)
_ = G.synthesis(ws[:1], c[:1]) # warm up
ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:])
# create new folder
outdirs = os.path.dirname(mp4)
os.makedirs(outdirs, exist_ok=True)
# add delta_c
z_samples = np.random.RandomState(123).randn(10000, G.z_dim)
delta_c = G.t_mapping(torch.from_numpy(np.mean(z_samples, axis=0, keepdims=True)).to(device), c[:1], truncation_psi=1.0, truncation_cutoff=None, update_emas=False)
delta_c = torch.squeeze(delta_c, 1)
c[:,3] += delta_c[:,0]
c[:,7] += delta_c[:,1]
c[:,11] += delta_c[:,2]
# Interpolation.
grid = []
for yi in range(grid_h):
row = []
for xi in range(grid_w):
x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1))
y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1])
interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0)
row.append(interp)
grid.append(row)
# Render video.
max_batch = 10000000
voxel_resolution = 512
video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264', **video_kwargs)
all_poses = []
for frame_idx in tqdm(range(num_keyframes * w_frames)):
imgs = []
for yi in range(grid_h):
for xi in range(grid_w):
if cfg == "Head":
cam2world_pose = LookAtPoseSampler.sample(3.14/2 + 2 * 3.14 * frame_idx / (num_keyframes * w_frames), 3.14/2,
camera_lookat_point, radius=2.75, device=device)
else:
pitch_range = 0.25
yaw_range = 1.5 # 0.35
cam2world_pose = LookAtPoseSampler.sample(3.14/2 + yaw_range * np.sin(2 * 3.14 * frame_idx / (num_keyframes * w_frames)),
3.14/2 -0.05 + pitch_range * np.cos(2 * 3.14 * frame_idx / (num_keyframes * w_frames)),
camera_lookat_point, radius=2.7, device=device)
all_poses.append(cam2world_pose.squeeze().cpu().numpy())
intrinsics = torch.tensor([[4.2647, 0, 0.5], [0, 4.2647, 0.5], [0, 0, 1]], device=device)
c = torch.cat([cam2world_pose.reshape(-1, 16), intrinsics.reshape(-1, 9)], 1)
interp = grid[yi][xi]
w = torch.from_numpy(interp(frame_idx / w_frames)).to(device)
# img = G.synthesis(ws=w.unsqueeze(0), c=c[0:1], noise_mode='const')[image_mode][0]
# fix delta_c
c[:,3] += delta_c[:,0]
c[:,7] += delta_c[:,1]
c[:,11] += delta_c[:,2]
img = G.synthesis(ws=w.unsqueeze(0), c=c[0:1], noise_mode='const')[image_mode][0]
if image_mode == 'image_depth':
img = -img
img = (img - img.min()) / (img.max() - img.min()) * 2 - 1
imgs.append(img)
if gen_shapes and frame_idx == 0:
# generate shapes
print('Generating shape for frame %d / %d ...' % (frame_idx, num_keyframes * w_frames))
samples, voxel_origin, voxel_size = create_samples(N=voxel_resolution, voxel_origin=[0, 0, 0], cube_length=G.rendering_kwargs['box_warp'])
samples = samples.to(device)
sigmas = torch.zeros((samples.shape[0], samples.shape[1], 1), device=device)
transformed_ray_directions_expanded = torch.zeros((samples.shape[0], max_batch, 3), device=device)
transformed_ray_directions_expanded[..., -1] = -1
head = 0
with tqdm(total = samples.shape[1]) as pbar:
with torch.no_grad():
while head < samples.shape[1]:
torch.manual_seed(0)
sigma = G.sample_mixed(samples[:, head:head+max_batch], transformed_ray_directions_expanded[:, :samples.shape[1]-head], w.unsqueeze(0), truncation_psi=psi, noise_mode='const')['sigma']
sigmas[:, head:head+max_batch] = sigma
head += max_batch
pbar.update(max_batch)
sigmas = sigmas.reshape((voxel_resolution, voxel_resolution, voxel_resolution)).cpu().numpy()
sigmas = np.flip(sigmas, 0)
pad = int(30 * voxel_resolution / 256)
pad_top = int(38 * voxel_resolution / 256)
sigmas[:pad] = 0
sigmas[-pad:] = 0
sigmas[:, :pad] = 0
sigmas[:, -pad_top:] = 0
sigmas[:, :, :pad] = 0
sigmas[:, :, -pad:] = 0
output_ply = False
if output_ply:
from shape_utils import convert_sdf_samples_to_ply
convert_sdf_samples_to_ply(np.transpose(sigmas, (2, 1, 0)), [0, 0, 0], 1, os.path.join(outdirs, mp4.replace('.mp4', '.ply')), level=10)
else: # output mrc
with mrcfile.new_mmap(mp4.replace('.mp4', '.mrc'), overwrite=True, shape=sigmas.shape, mrc_mode=2) as mrc:
mrc.data[:] = sigmas
video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h))
video_out.close()
all_poses = np.stack(all_poses)
if gen_shapes:
print(all_poses.shape)
with open(mp4.replace('.mp4', '_trajectory.npy'), 'wb') as f:
np.save(f, all_poses)
#----------------------------------------------------------------------------
def parse_range(s: Union[str, List[int]]) -> List[int]:
'''Parse a comma separated list of numbers or ranges and return a list of ints.
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
'''
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
#----------------------------------------------------------------------------
def parse_tuple(s: Union[str, Tuple[int,int]]) -> Tuple[int, int]:
'''Parse a 'M,N' or 'MxN' integer tuple.
Example:
'4x2' returns (4,2)
'0,1' returns (0,1)
'''
if isinstance(s, tuple): return s
m = re.match(r'^(\d+)[x,](\d+)$', s)
if m:
return (int(m.group(1)), int(m.group(2)))
raise ValueError(f'cannot parse tuple {s}')
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--latent', type=str, help='latent code', required=True)
@click.option('--output', help='Output path', type=str, required=True)
@click.option('--grid', type=parse_tuple, help='Grid width/height, e.g. \'4x3\' (default: 1x1)', default=(1,1))
@click.option('--num-keyframes', type=int, help='Number of seeds to interpolate through. If not specified, determine based on the length of the seeds array given by --seeds.', default=None)
@click.option('--w-frames', type=int, help='Number of frames to interpolate between latents', default=240)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--trunc-cutoff', 'truncation_cutoff', type=int, help='Truncation cutoff', default=14, show_default=True)
@click.option('--reload_modules', help='Overload persistent modules?', type=bool, required=False, metavar='BOOL', default=False, show_default=True)
@click.option('--cfg', help='Config', type=click.Choice(['FFHQ', 'Cats', 'Head']), required=False, metavar='STR', default='FFHQ', show_default=True)
@click.option('--image_mode', help='Image mode', type=click.Choice(['image', 'image_depth', 'image_raw']), required=False, metavar='STR', default='image', show_default=True)
@click.option('--sample_mult', 'sampling_multiplier', type=float, help='Multiplier for depth sampling in volume rendering', default=1, show_default=True)
@click.option('--nrr', type=int, help='Neural rendering resolution override', default=None, show_default=True)
@click.option('--shapes', type=bool, help='Gen shapes for shape interpolation', default=False, show_default=True)
@click.option('--interpolate', type=bool, help='Interpolate between seeds', default=True, show_default=True)
def generate_images(
network_pkl: str,
latent: str,
output: str,
truncation_psi: float,
truncation_cutoff: int,
grid: Tuple[int,int],
num_keyframes: Optional[int],
w_frames: int,
reload_modules: bool,
cfg: str,
image_mode: str,
sampling_multiplier: float,
nrr: Optional[int],
shapes: bool,
interpolate: bool,
):
"""Render a latent vector interpolation video.
"""
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda:1')
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
G.rendering_kwargs['depth_resolution'] = int(G.rendering_kwargs['depth_resolution'] * sampling_multiplier)
G.rendering_kwargs['depth_resolution_importance'] = int(G.rendering_kwargs['depth_resolution_importance'] * sampling_multiplier)
if nrr is not None: G.neural_rendering_resolution = nrr
if truncation_cutoff == 0:
truncation_psi = 1.0 # truncation cutoff of 0 means no truncation anyways
if truncation_psi == 1.0:
truncation_cutoff = 14 # no truncation so doesn't matter where we cutoff
ws = torch.tensor(np.load(latent)['w']).to(device)
gen_interp_video(G=G, mp4=output, ws=ws, bitrate='100M', grid_dims=grid, num_keyframes=num_keyframes, w_frames=w_frames, psi=truncation_psi, truncation_cutoff=truncation_cutoff, cfg=cfg, image_mode=image_mode, gen_shapes=shapes, device=device)
#----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------