-
Notifications
You must be signed in to change notification settings - Fork 158
/
launch.py
88 lines (75 loc) · 2.94 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/python3
import os
import sys
import socket
import random
import argparse
import subprocess
import time
def _find_free_port():
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def _get_rand_port():
hour = time.time() // 3600
random.seed(int(hour))
return random.randrange(40000, 60000)
def init_workdir():
ROOT = os.path.dirname(os.path.abspath(__file__))
os.chdir(ROOT)
sys.path.insert(0, ROOT)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Launcher')
parser.add_argument('--launch', type=str, default='projects/UNINEXT/train_net.py',
help='Specify launcher script.')
parser.add_argument('--dist', type=int, default=1,
help='Whether start by torch.distributed.launch.')
parser.add_argument('--np', type=int, default=8,
help='number of (GPU) processes per node')
parser.add_argument('--nn', type=int, default=1,
help='number of workers')
parser.add_argument('--port', type=int, default=-1,
help='master port for communication')
parser.add_argument('--worker_rank', type=int, default=0)
parser.add_argument('--master_address', type=str)
args, other_args = parser.parse_known_args()
# change to current dir
prj_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(prj_dir)
init_workdir()
# Get training info
master_address = args.master_address
num_processes_per_worker = args.np
num_workers = args.nn
worker_rank = args.worker_rank
# Get port
if args.port > 0:
master_port = args.port
elif num_workers == 1:
master_port = _find_free_port()
else: # This reduce the conflict possibility, but the port availablity is not guaranteed.
master_port = _get_rand_port()
if args.dist >= 1:
print(f'Start {args.launch} by torch.distributed.launch with port {master_port}!', flush=True)
cmd = f'python3 {args.launch}\
--num-gpus={num_processes_per_worker}'
if num_workers > 1:
# multi-machine
assert master_address is not None
dist_url = "tcp://" + str(master_address) + ":" + str(master_port)
cmd += f" --num-machines={num_workers}\
--machine-rank={worker_rank}\
--dist-url={dist_url}"
else:
print(f'Start {args.launch}!', flush=True)
cmd = f'python3 {args.launch}'
# $(dirname "$0")/train.py $CONFIG --launcher pytorch ${@:3}'
for argv in other_args:
cmd += f' {argv}'
print("==> Run command: " + cmd)
exit_code = subprocess.call(cmd, shell=True)
sys.exit(exit_code)