Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bug in rawSelectByDegrees depending on internal degrees #3578

Open
mahrud opened this issue Nov 11, 2024 · 1 comment
Open

bug in rawSelectByDegrees depending on internal degrees #3578

mahrud opened this issue Nov 11, 2024 · 1 comment
Labels
Engine Macaulay2/e

Comments

@mahrud
Copy link
Member

mahrud commented Nov 11, 2024

I have two ZZ^21 graded free modules M = source mingens I and N = S^(- degrees M) of rank 86 with the same degrees that exhibit bizarre behavior:

First, asking for their degrees takes very long:

ii110 : elapsedTime degrees N;
 -- .757907s elapsed

ii111 : elapsedTime degrees M;
 -- 1.68677s elapsed

Second, rawSelectByDegrees seems to behave differently for them:

ii104 : rawSelectByDegrees(raw M, d, d)

oo104 = {0}

ii105 : rawSelectByDegrees(raw N, d, d)

oo105 = {0, 3, 5, 12, 14, 42, 71, 73, 80, 83, 85}

I presume this is attributable to the internal degree object chosen for them, but I don't understand why:

oo102 = free(rank 86 degrees = {T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6})
        free(rank 86 degrees = {T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1T_2^3T_3^4T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^3T_2^3T_3^4T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^2T_2^6T_3^8T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1T_2^6T_3^8T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^6T_2^6T_3^8T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1^3T_2^4T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1^3T_2^4T_3T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^4T_2^7T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1^4T_2^7T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1^3T_2^7T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^3T_1^3T_2^7T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^2T_1^6T_2^8T_3^2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0T_1^6T_2^8T_3^2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_1^6T_2^8T_3^2T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^3T_2^5T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1^3T_2^5T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1^2T_2^5T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^3T_2^8T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1^5T_2^9T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^2T_2^3T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^3T_2^6T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^2T_2^6T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^2T_2^6T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^5T_2^7T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^4T_2^7T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^4T_1^4T_2^7T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^5T_2^10T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^5T_2^10T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^4T_2^10T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1T_2T_3^5T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^2T_2^4T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^2T_2^4T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1T_2^4T_3^9T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^3T_2^7T_3^13T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^2T_2^7T_3^13T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^6T_1^4T_2^5T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^4T_2^5T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^3T_2^5T_3^6T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^5T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^5T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^4T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^4T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^4T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^3T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^3T_2^8T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^5T_2^11T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^4T_2^11T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^10T_1^4T_2^11T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^10T_1^3T_2^11T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^6T_1^6T_2^9T_3^7T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^5T_1^6T_2^9T_3^7T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^7T_2^12T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^7T_2^12T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^6T_2^12T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^7T_1^6T_2^12T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^4T_2^6T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^3T_2^6T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^3T_2^6T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^4T_2^9T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^4T_2^9T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^3T_2^9T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^6T_2^10T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^6T_2^10T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^8T_1^5T_2^10T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^6T_2^13T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^3T_2^7T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^9T_1^5T_2^8T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^6T_2^11T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^5T_2^11T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^11T_1^5T_2^11T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^10T_1^2T_2^2T_3^10T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^13T_1^3T_2^5T_3^14T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^16T_1^4T_2^8T_3^18T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^10T_1^4T_2^6T_3^11T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^13T_1^5T_2^9T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^5T_2^9T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^4T_2^9T_3^15T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^15T_1^6T_2^12T_3^19T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^15T_1^5T_2^12T_3^19T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^10T_1^6T_2^10T_3^12T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^7T_2^13T_3^16T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^12T_1^6T_2^13T_3^16T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^14T_1^8T_2^16T_3^20T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^14T_1^7T_2^16T_3^20T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6, T_0^14T_1^6T_2^16T_3^20T_4^6T_5^6T_8^2T_10^6T_11^2T_12^2T_13^4T_18^6T_19^6T_20^6})

The order of their degrees is the same, so why are they represented differently in the engine? Presumably this has something to do with the ideal, in which case this seems to be a bug in rawSelectByDegrees.

cc: @mikestillman any ideas?

@mahrud mahrud added the Engine Macaulay2/e label Nov 11, 2024
@mahrud
Copy link
Member Author

mahrud commented Nov 13, 2024

I think this is related to torsion degrees, but I can't tell what is going wrong. Here is a minimal example:

debug Core
R = QQ[x, y, Degrees => map(ZZ^1 ++ ZZ^1/ideal 3, , id_(ZZ^2))]
C = res ((ideal vars R)^3);
degrees source C.dd_1 -- {{3, 0}, {2, 1}, {1, -1}, {0, 0}}
positions(degrees source C.dd_1, d -> d == {0,0})   -- gives {3}
rawSelectByDegrees(raw source C.dd_1, {0,0}, {0,0}) -- gives {}

Though this doesn't explain why degrees N and degrees M take so long in the example above.

Related: #1925

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Engine Macaulay2/e
Projects
None yet
Development

No branches or pull requests

1 participant