You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I running the preprocess.py,there is a warning 2024-11-24 21:52:01.503 | WARNING | nndet.planning.experiment.base:determine_postprocessing:263 - No planning for post-processing implemented.
2024-11-24 21:51:28.019 | INFO | nndet.planning.properties.intensity:run_collect_intensity_properties:86 - Processing intensity values of modality 0 2024-11-24 21:52:01.497 | INFO | nndet.planning.experiment.base:determine_whether_to_use_mask_for_norm:311 - not using nonzero mask for normalization 2024-11-24 21:52:01.497 | INFO | nndet.planning.experiment.base:plan_base:164 - Are we using the nonzero maks for normalization? OrderedDict([(0, False)]) 2024-11-24 21:52:01.500 | INFO | nndet.planning.experiment.base:plan_base:166 - Base target spacing is [5. 0.42969301 0.42969301] 2024-11-24 21:52:01.503 | INFO | nndet.planning.experiment.base:plan_base:169 - Normalization schemes OrderedDict([(0, 'nonCT')]) **2024-11-24 21:52:01.503 | WARNING | nndet.planning.experiment.base:determine_postprocessing:263 - No planning for post-processing implemented.** 2024-11-24 21:52:01.505 | INFO | nndet.planning.experiment.base:plan_base_stage:219 - The median shape of the dataset is [ 35.6 511.99344824 511.99165494] 2024-11-24 21:52:01.506 | INFO | nndet.planning.experiment.base:plan_base_stage:221 - The max shape in the dataset is [ 51.48000069 605.08312736 605.0873354 ] 2024-11-24 21:52:01.506 | INFO | nndet.planning.experiment.base:plan_base_stage:223 - The min shape in the dataset is [ 16. 464.2364498 388.99727502] 2024-11-24 21:52:01.507 | INFO | nndet.planning.experiment.base:plan_base_stage:227 - The transposed median shape of the dataset is [ 35.6 511.99344824 511.99165494] 2024-11-24 21:52:01.529 | INFO | nndet.planning.architecture.boxes.c002:process_properties:73 - Processing dataset properties 2024-11-24 21:52:04.636 | INFO | nndet.planning.architecture.boxes.c002:_get_initial_patch_size:340 - Using initial patch size: [ 36 512 512] 2024-11-24 21:52:04.636 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:362 - Architecture overwrites: {} Anchor overwrites: {} 2024-11-24 21:52:04.637 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:364 - Building architecture according to plan of not_found 2024-11-24 21:52:04.637 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:367 - Start channels: 32; head channels: 128; fpn channels: 128 2024-11-24 21:52:04.637 | INFO | nndet.core.boxes.anchors:__init__:288 - Discarding anchor generator kwargs {'stride': 1} 2024-11-24 21:52:04.637 | INFO | nndet.ptmodule.retinaunet.base:_build_encoder:464 - Building:: encoder Encoder: {} 2024-11-24 21:52:04.817 | INFO | nndet.ptmodule.retinaunet.base:_build_decoder:496 - Building:: decoder UFPNModular: {'min_out_channels': 8, 'upsampling_mode': 'transpose', 'num_lateral': 1, 'norm_lateral': False, 'activation_lateral': False, 'num_out': 1, 'norm_out': False, 'activation_out': False} 2024-11-24 21:52:04.844 | INFO | nndet.core.boxes.matcher.atss:__init__:45 - Running ATSS Matching with num_candidates=4 and center_in_gt False. 2024-11-24 21:52:04.845 | INFO | nndet.ptmodule.retinaunet.base:_build_head_classifier:530 - Building:: classifier BCECLassifier: {'num_convs': 1, 'norm_channels_per_group': 16, 'norm_affine': True, 'reduction': 'mean', 'loss_weight': 1.0, 'prior_prob': 0.01} 2024-11-24 21:52:04.854 | INFO | nndet.arch.heads.classifier:init_weights:215 - Init classifier weights: prior prob 0.01 2024-11-24 21:52:04.861 | INFO | nndet.ptmodule.retinaunet.base:_build_head_regressor:564 - Building:: regressor GIoURegressor: {'num_convs': 1, 'norm_channels_per_group': 16, 'norm_affine': True, 'reduction': 'sum', 'loss_weight': 1.0, 'learn_scale': True} 2024-11-24 21:52:04.873 | INFO | nndet.arch.heads.regressor:build_scales:150 - Learning level specific scalar in regressor 2024-11-24 21:52:04.873 | INFO | nndet.arch.heads.regressor:init_weights:196 - Overwriting regressor conv weight init 2024-11-24 21:52:04.883 | INFO | nndet.ptmodule.retinaunet.base:_build_head:602 - Building:: head DetectionHeadHNMNative: {} sampler HardNegativeSamplerBatched: {'batch_size_per_image': 32, 'positive_fraction': 0.33, 'pool_size': 20, 'min_neg': 1} 2024-11-24 21:52:04.883 | INFO | nndet.core.boxes.sampler:__init__:235 - Sampling hard negatives on a per batch basis 2024-11-24 21:52:04.883 | INFO | nndet.ptmodule.retinaunet.base:_build_segmenter:638 - Building:: segmenter DiCESegmenterFgBg {'dice_kwargs': {'batch_dice': True}} 2024-11-24 21:52:04.884 | INFO | nndet.losses.segmentation:__init__:108 - Running batch dice True and do bg False in dice loss. 2024-11-24 21:52:04.884 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:421 - Model Inference Summary: detections_per_img: 100 score_thresh: 0 topk_candidates: 10000 remove_small_boxes: 0.01 nms_thresh: 0.6
What's the meaning of this?,How should I use this post-processing
The text was updated successfully, but these errors were encountered:
Hi @GarryJAY502,
As the message said, the post-processing step is not implemented in the current version and is kept as a placeholder for future work. So you can ignore the message for now.
❓ Question
When I running the preprocess.py,there is a warning
2024-11-24 21:52:01.503 | WARNING | nndet.planning.experiment.base:determine_postprocessing:263 - No planning for post-processing implemented.
2024-11-24 21:51:28.019 | INFO | nndet.planning.properties.intensity:run_collect_intensity_properties:86 - Processing intensity values of modality 0 2024-11-24 21:52:01.497 | INFO | nndet.planning.experiment.base:determine_whether_to_use_mask_for_norm:311 - not using nonzero mask for normalization 2024-11-24 21:52:01.497 | INFO | nndet.planning.experiment.base:plan_base:164 - Are we using the nonzero maks for normalization? OrderedDict([(0, False)]) 2024-11-24 21:52:01.500 | INFO | nndet.planning.experiment.base:plan_base:166 - Base target spacing is [5. 0.42969301 0.42969301] 2024-11-24 21:52:01.503 | INFO | nndet.planning.experiment.base:plan_base:169 - Normalization schemes OrderedDict([(0, 'nonCT')]) **2024-11-24 21:52:01.503 | WARNING | nndet.planning.experiment.base:determine_postprocessing:263 - No planning for post-processing implemented.** 2024-11-24 21:52:01.505 | INFO | nndet.planning.experiment.base:plan_base_stage:219 - The median shape of the dataset is [ 35.6 511.99344824 511.99165494] 2024-11-24 21:52:01.506 | INFO | nndet.planning.experiment.base:plan_base_stage:221 - The max shape in the dataset is [ 51.48000069 605.08312736 605.0873354 ] 2024-11-24 21:52:01.506 | INFO | nndet.planning.experiment.base:plan_base_stage:223 - The min shape in the dataset is [ 16. 464.2364498 388.99727502] 2024-11-24 21:52:01.507 | INFO | nndet.planning.experiment.base:plan_base_stage:227 - The transposed median shape of the dataset is [ 35.6 511.99344824 511.99165494] 2024-11-24 21:52:01.529 | INFO | nndet.planning.architecture.boxes.c002:process_properties:73 - Processing dataset properties 2024-11-24 21:52:04.636 | INFO | nndet.planning.architecture.boxes.c002:_get_initial_patch_size:340 - Using initial patch size: [ 36 512 512] 2024-11-24 21:52:04.636 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:362 - Architecture overwrites: {} Anchor overwrites: {} 2024-11-24 21:52:04.637 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:364 - Building architecture according to plan of not_found 2024-11-24 21:52:04.637 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:367 - Start channels: 32; head channels: 128; fpn channels: 128 2024-11-24 21:52:04.637 | INFO | nndet.core.boxes.anchors:__init__:288 - Discarding anchor generator kwargs {'stride': 1} 2024-11-24 21:52:04.637 | INFO | nndet.ptmodule.retinaunet.base:_build_encoder:464 - Building:: encoder Encoder: {} 2024-11-24 21:52:04.817 | INFO | nndet.ptmodule.retinaunet.base:_build_decoder:496 - Building:: decoder UFPNModular: {'min_out_channels': 8, 'upsampling_mode': 'transpose', 'num_lateral': 1, 'norm_lateral': False, 'activation_lateral': False, 'num_out': 1, 'norm_out': False, 'activation_out': False} 2024-11-24 21:52:04.844 | INFO | nndet.core.boxes.matcher.atss:__init__:45 - Running ATSS Matching with num_candidates=4 and center_in_gt False. 2024-11-24 21:52:04.845 | INFO | nndet.ptmodule.retinaunet.base:_build_head_classifier:530 - Building:: classifier BCECLassifier: {'num_convs': 1, 'norm_channels_per_group': 16, 'norm_affine': True, 'reduction': 'mean', 'loss_weight': 1.0, 'prior_prob': 0.01} 2024-11-24 21:52:04.854 | INFO | nndet.arch.heads.classifier:init_weights:215 - Init classifier weights: prior prob 0.01 2024-11-24 21:52:04.861 | INFO | nndet.ptmodule.retinaunet.base:_build_head_regressor:564 - Building:: regressor GIoURegressor: {'num_convs': 1, 'norm_channels_per_group': 16, 'norm_affine': True, 'reduction': 'sum', 'loss_weight': 1.0, 'learn_scale': True} 2024-11-24 21:52:04.873 | INFO | nndet.arch.heads.regressor:build_scales:150 - Learning level specific scalar in regressor 2024-11-24 21:52:04.873 | INFO | nndet.arch.heads.regressor:init_weights:196 - Overwriting regressor conv weight init 2024-11-24 21:52:04.883 | INFO | nndet.ptmodule.retinaunet.base:_build_head:602 - Building:: head DetectionHeadHNMNative: {} sampler HardNegativeSamplerBatched: {'batch_size_per_image': 32, 'positive_fraction': 0.33, 'pool_size': 20, 'min_neg': 1} 2024-11-24 21:52:04.883 | INFO | nndet.core.boxes.sampler:__init__:235 - Sampling hard negatives on a per batch basis 2024-11-24 21:52:04.883 | INFO | nndet.ptmodule.retinaunet.base:_build_segmenter:638 - Building:: segmenter DiCESegmenterFgBg {'dice_kwargs': {'batch_dice': True}} 2024-11-24 21:52:04.884 | INFO | nndet.losses.segmentation:__init__:108 - Running batch dice True and do bg False in dice loss. 2024-11-24 21:52:04.884 | INFO | nndet.ptmodule.retinaunet.base:from_config_plan:421 - Model Inference Summary: detections_per_img: 100 score_thresh: 0 topk_candidates: 10000 remove_small_boxes: 0.01 nms_thresh: 0.6
What's the meaning of this?,How should I use this post-processing
The text was updated successfully, but these errors were encountered: