-
Notifications
You must be signed in to change notification settings - Fork 0
/
predictor_test.go
114 lines (101 loc) · 3.25 KB
/
predictor_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package paddle
import (
"io/ioutil"
"os"
"testing"
)
func TestNewPredictor(t *testing.T) {
config := NewConfig()
config.SetModel("./mobilenetv1/inference.pdmodel", "./mobilenetv1/inference.pdiparams")
config.EnableUseGpu(100, 0)
predictor := NewPredictor(config)
inNames := predictor.GetInputNames()
t.Logf("InputNames:%+v", inNames)
outNames := predictor.GetOutputNames()
t.Logf("OutputNames:%+v", outNames)
inHandle := predictor.GetInputHandle(inNames[0])
inHandle.Reshape([]int32{1, 3, 224, 224})
t.Logf("inHandle name:%+v, shape:%+v", inHandle.Name(), inHandle.Shape())
var lod [][]uint
lod = append(lod, []uint{0, 1, 2})
lod = append(lod, []uint{1, 2, 3, 4})
inHandle.SetLod(lod)
t.Logf("inHandle Lod:%+v", inHandle.Lod())
data := make([]float32, numElements([]int32{1, 3, 224, 224}))
for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ {
data[i] = float32(i%255) * 0.1
}
inHandle.CopyFromCpu(data)
t.Logf("inHandle Type:%+v", inHandle.Type())
predictor.Run()
outHandle := predictor.GetOutputHandle(outNames[0])
t.Logf("outHandle name:%+v", outHandle.Name())
outShape := outHandle.Shape()
t.Logf("outHandle Shape:%+v", outShape)
outData := make([]float32, numElements(outShape))
outHandle.CopyToCpu(outData)
t.Log(outData)
cloned := predictor.Clone()
t.Logf("InputNum:%+v", cloned.GetInputNum())
t.Logf("OutputNum:%+v", cloned.GetInputNum())
cloned.ClearIntermediateTensor()
}
func TestFromBuffer(t *testing.T) {
modelFile, err := os.Open("./mobilenetv1/inference.pdmodel")
if err != nil {
t.Fatal(err)
}
paramsFile, err := os.Open("./mobilenetv1/inference.pdiparams")
if err != nil {
t.Fatal(err)
}
defer modelFile.Close()
defer paramsFile.Close()
model, err := ioutil.ReadAll(modelFile)
if err != nil {
t.Fatal(err)
}
params, err := ioutil.ReadAll(paramsFile)
if err != nil {
t.Fatal(err)
}
config := NewConfig()
config.SetModelBuffer(string(model), string(params))
predictor := NewPredictor(config)
inNames := predictor.GetInputNames()
outNames := predictor.GetOutputNames()
inHandle := predictor.GetInputHandle(inNames[0])
inHandle.Reshape([]int32{1, 3, 224, 224})
data := make([]float32, numElements([]int32{1, 3, 224, 224}))
for i := 0; i < int(numElements([]int32{1, 3, 224, 224})); i++ {
data[i] = float32(i%255) * 0.1
}
inHandle.CopyFromCpu(data)
predictor.Run()
outHandle := predictor.GetOutputHandle(outNames[0])
outShape := outHandle.Shape()
t.Logf("outHandle Shape:%+v", outShape)
outData := make([]float32, numElements(outShape))
outHandle.CopyToCpu(outData)
t.Log(outData)
}
func numElements(shape []int32) int32 {
n := int32(1)
for _, v := range shape {
n *= v
}
return n
}