-
Notifications
You must be signed in to change notification settings - Fork 10
/
app.py
156 lines (126 loc) · 4.62 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import streamlit as st
import os
import tempfile
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.memory import ConversationBufferMemory
from langchain_community.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
load_dotenv()
openai_api_key = os.environ["OPENAI_API_KEY"]
def initialize_session_state():
if "history" not in st.session_state:
st.session_state["history"] = []
if "generated" not in st.session_state:
st.session_state["generated"] = [
"Hello! Feel free to ask me any questions."
]
if "past" not in st.session_state:
st.session_state["past"] = ["Hey! 👋"]
def conversation_chat(query, chain, history):
result = chain({
"question": query,
"chat_history": history
})
history.append((query, result["answer"]))
return result["answer"]
def display_chat_history(chain):
reply_container = st.container()
container = st.container()
with container:
with st.form(key="my_form", clear_on_submit=True):
user_input = st.text_input(
"Question:",
placeholder="Ask about your Documents",
key="input"
)
submit_button = st.form_submit_button(label="Send")
if submit_button and user_input:
with st.spinner("Generating response ......"):
output = conversation_chat(
query=user_input,
chain=chain,
history=st.session_state["history"]
)
st.session_state["past"].append(user_input)
st.session_state["generated"].append(output)
if st.session_state["generated"]:
with reply_container:
for i in range(len(st.session_state["generated"])):
message(
st.session_state["past"][i],
is_user=True,
key=str(i) + "_user",
avatar_style="thumbs"
)
message(
st.session_state["generated"][i],
key=str(i),
avatar_style="fun-emoji"
)
def create_conversational_chain(vector_store):
llm = ChatOpenAI(
model_name="gpt-3.5-turbo",
temperature=0.1,
openai_api_key=openai_api_key
)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
memory=memory
)
return chain
def main():
initialize_session_state()
st.title("RAG ChatBot Using LangChain and ChatGPT")
st.sidebar.title("Document Processing")
uploaded_files = st.sidebar.file_uploader(
"Upload Files",
accept_multiple_files=True
)
if uploaded_files:
text = []
for file in uploaded_files:
file_extension = os.path.splitext(file.name)[1]
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.read())
temp_file_path = temp_file.name
loader = None
if file_extension == ".pdf":
loader = PyPDFLoader(temp_file_path)
elif file_extension == ".docx" or file_extension == ".doc":
loader = Docx2txtLoader(temp_file_path)
elif file_extension == ".txt":
loader = TextLoader(temp_file_path)
if loader:
text.extend(loader.load())
os.remove(temp_file_path)
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=768,
chunk_overlap=128,
length_function=len
)
text_chunks = text_splitter.split_documents(text)
embedding = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
vector_store = Chroma.from_documents(
documents=text_chunks,
embedding=embedding,
persist_directory="chroma_store"
)
chain = create_conversational_chain(vector_store=vector_store)
display_chat_history(chain=chain)
if __name__ == "__main__":
main()