Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DMSTGCN 运行 PEMSD4、PEMSD8 数据集报错 #439

Open
HelloDuoLA opened this issue Aug 30, 2024 · 0 comments
Open

DMSTGCN 运行 PEMSD4、PEMSD8 数据集报错 #439

HelloDuoLA opened this issue Aug 30, 2024 · 0 comments

Comments

@HelloDuoLA
Copy link

/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/gensim/similarities/init.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package https://pypi.org/project/python-Levenshtein/ is unavailable. Install Levenhstein (e.g. pip install python-Levenshtein) to suppress this warning.
warnings.warn(msg)
/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/data/dataset/traffic_state_datatset.py:909: RuntimeWarning: Mean of empty slice.
scaler = StandardScaler(mean=x_train.mean(), std=x_train.std())
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:170: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:233: RuntimeWarning: Degrees of freedom <= 0 for slice
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:194: RuntimeWarning: invalid value encountered in true_divide
arrmean = um.true_divide(
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:226: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
return array(a, dtype, copy=False, order=order)
<array_function internals>:5: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
Using backend: pytorch
Traceback (most recent call last):
File "run_model.py", line 36, in
run_model(task=args.task, model_name=args.model, dataset_name=args.dataset,
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/pipeline/pipeline.py", line 63, in run_model
executor.evaluate(test_data)
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/executor/traffic_state_executor.py", line 274, in evaluate
self.evaluator.collect({'y_true': torch.tensor(y_truths), 'y_pred': torch.tensor(y_preds)})
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/evaluator/traffic_state_evaluator.py", line 47, in collect
raise ValueError("batch['y_true'].shape is not equal to batch['y_pred'].shape")
ValueError: batch['y_true'].shape is not equal to batch['y_pred'].shape

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant