You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/gensim/similarities/init.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package https://pypi.org/project/python-Levenshtein/ is unavailable. Install Levenhstein (e.g. pip install python-Levenshtein) to suppress this warning.
warnings.warn(msg)
/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/data/dataset/traffic_state_datatset.py:909: RuntimeWarning: Mean of empty slice.
scaler = StandardScaler(mean=x_train.mean(), std=x_train.std())
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:170: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:233: RuntimeWarning: Degrees of freedom <= 0 for slice
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:194: RuntimeWarning: invalid value encountered in true_divide
arrmean = um.true_divide(
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:226: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
return array(a, dtype, copy=False, order=order)
<array_function internals>:5: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
Using backend: pytorch
Traceback (most recent call last):
File "run_model.py", line 36, in
run_model(task=args.task, model_name=args.model, dataset_name=args.dataset,
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/pipeline/pipeline.py", line 63, in run_model
executor.evaluate(test_data)
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/executor/traffic_state_executor.py", line 274, in evaluate
self.evaluator.collect({'y_true': torch.tensor(y_truths), 'y_pred': torch.tensor(y_preds)})
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/evaluator/traffic_state_evaluator.py", line 47, in collect
raise ValueError("batch['y_true'].shape is not equal to batch['y_pred'].shape")
ValueError: batch['y_true'].shape is not equal to batch['y_pred'].shape
The text was updated successfully, but these errors were encountered:
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/gensim/similarities/init.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package https://pypi.org/project/python-Levenshtein/ is unavailable. Install Levenhstein (e.g.
pip install python-Levenshtein
) to suppress this warning.warnings.warn(msg)
/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/data/dataset/traffic_state_datatset.py:909: RuntimeWarning: Mean of empty slice.
scaler = StandardScaler(mean=x_train.mean(), std=x_train.std())
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:170: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:233: RuntimeWarning: Degrees of freedom <= 0 for slice
ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:194: RuntimeWarning: invalid value encountered in true_divide
arrmean = um.true_divide(
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_methods.py:226: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
/home/xiezhicong/anaconda3/envs/libcity_py38/lib/python3.8/site-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
return array(a, dtype, copy=False, order=order)
<array_function internals>:5: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
Using backend: pytorch
Traceback (most recent call last):
File "run_model.py", line 36, in
run_model(task=args.task, model_name=args.model, dataset_name=args.dataset,
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/pipeline/pipeline.py", line 63, in run_model
executor.evaluate(test_data)
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/executor/traffic_state_executor.py", line 274, in evaluate
self.evaluator.collect({'y_true': torch.tensor(y_truths), 'y_pred': torch.tensor(y_preds)})
File "/home/xiezhicong/Code/ospp/Bigscity-LibCity/libcity/evaluator/traffic_state_evaluator.py", line 47, in collect
raise ValueError("batch['y_true'].shape is not equal to batch['y_pred'].shape")
ValueError: batch['y_true'].shape is not equal to batch['y_pred'].shape
The text was updated successfully, but these errors were encountered: