-
Notifications
You must be signed in to change notification settings - Fork 84
/
Train_cifar.py
277 lines (225 loc) · 11.1 KB
/
Train_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import random
import os
import argparse
import numpy as np
from PreResNet import *
from sklearn.mixture import GaussianMixture
import dataloader_cifar as dataloader
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--batch_size', default=64, type=int, help='train batchsize')
parser.add_argument('--lr', '--learning_rate', default=0.02, type=float, help='initial learning rate')
parser.add_argument('--noise_mode', default='sym')
parser.add_argument('--alpha', default=4, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=25, type=float, help='weight for unsupervised loss')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--num_epochs', default=300, type=int)
parser.add_argument('--r', default=0.5, type=float, help='noise ratio')
parser.add_argument('--id', default='')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=0, type=int)
parser.add_argument('--num_class', default=10, type=int)
parser.add_argument('--data_path', default='./cifar-10', type=str, help='path to dataset')
parser.add_argument('--dataset', default='cifar10', type=str)
args = parser.parse_args()
torch.cuda.set_device(args.gpuid)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Training
def train(epoch,net,net2,optimizer,labeled_trainloader,unlabeled_trainloader):
net.train()
net2.eval() #fix one network and train the other
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset)//args.batch_size)+1
for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):
try:
inputs_u, inputs_u2 = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2 = unlabeled_train_iter.next()
batch_size = inputs_x.size(0)
# Transform label to one-hot
labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1,1), 1)
w_x = w_x.view(-1,1).type(torch.FloatTensor)
inputs_x, inputs_x2, labels_x, w_x = inputs_x.cuda(), inputs_x2.cuda(), labels_x.cuda(), w_x.cuda()
inputs_u, inputs_u2 = inputs_u.cuda(), inputs_u2.cuda()
with torch.no_grad():
# label co-guessing of unlabeled samples
outputs_u11 = net(inputs_u)
outputs_u12 = net(inputs_u2)
outputs_u21 = net2(inputs_u)
outputs_u22 = net2(inputs_u2)
pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1) + torch.softmax(outputs_u21, dim=1) + torch.softmax(outputs_u22, dim=1)) / 4
ptu = pu**(1/args.T) # temparature sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
targets_u = targets_u.detach()
# label refinement of labeled samples
outputs_x = net(inputs_x)
outputs_x2 = net(inputs_x2)
px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
px = w_x*labels_x + (1-w_x)*px
ptx = px**(1/args.T) # temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize
targets_x = targets_x.detach()
# mixmatch
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1-l)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a + (1 - l) * input_b
mixed_target = l * target_a + (1 - l) * target_b
logits = net(mixed_input)
logits_x = logits[:batch_size*2]
logits_u = logits[batch_size*2:]
Lx, Lu, lamb = criterion(logits_x, mixed_target[:batch_size*2], logits_u, mixed_target[batch_size*2:], epoch+batch_idx/num_iter, warm_up)
# regularization
prior = torch.ones(args.num_class)/args.num_class
prior = prior.cuda()
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior*torch.log(prior/pred_mean))
loss = Lx + lamb * Lu + penalty
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t Labeled loss: %.2f Unlabeled loss: %.2f'
%(args.dataset, args.r, args.noise_mode, epoch, args.num_epochs, batch_idx+1, num_iter, Lx.item(), Lu.item()))
sys.stdout.flush()
def warmup(epoch,net,optimizer,dataloader):
net.train()
num_iter = (len(dataloader.dataset)//dataloader.batch_size)+1
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = net(inputs)
loss = CEloss(outputs, labels)
if args.noise_mode=='asym': # penalize confident prediction for asymmetric noise
penalty = conf_penalty(outputs)
L = loss + penalty
elif args.noise_mode=='sym':
L = loss
L.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t CE-loss: %.4f'
%(args.dataset, args.r, args.noise_mode, epoch, args.num_epochs, batch_idx+1, num_iter, loss.item()))
sys.stdout.flush()
def test(epoch,net1,net2):
net1.eval()
net2.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs1 = net1(inputs)
outputs2 = net2(inputs)
outputs = outputs1+outputs2
_, predicted = torch.max(outputs, 1)
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100.*correct/total
print("\n| Test Epoch #%d\t Accuracy: %.2f%%\n" %(epoch,acc))
test_log.write('Epoch:%d Accuracy:%.2f\n'%(epoch,acc))
test_log.flush()
def eval_train(model,all_loss):
model.eval()
losses = torch.zeros(50000)
with torch.no_grad():
for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = CE(outputs, targets)
for b in range(inputs.size(0)):
losses[index[b]]=loss[b]
losses = (losses-losses.min())/(losses.max()-losses.min())
all_loss.append(losses)
if args.r==0.9: # average loss over last 5 epochs to improve convergence stability
history = torch.stack(all_loss)
input_loss = history[-5:].mean(0)
input_loss = input_loss.reshape(-1,1)
else:
input_loss = losses.reshape(-1,1)
# fit a two-component GMM to the loss
gmm = GaussianMixture(n_components=2,max_iter=10,tol=1e-2,reg_covar=5e-4)
gmm.fit(input_loss)
prob = gmm.predict_proba(input_loss)
prob = prob[:,gmm.means_.argmin()]
return prob,all_loss
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current-warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u*float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u)**2)
return Lx, Lu, linear_rampup(epoch,warm_up)
class NegEntropy(object):
def __call__(self,outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log()*probs, dim=1))
def create_model():
model = ResNet18(num_classes=args.num_class)
model = model.cuda()
return model
stats_log=open('./checkpoint/%s_%.1f_%s'%(args.dataset,args.r,args.noise_mode)+'_stats.txt','w')
test_log=open('./checkpoint/%s_%.1f_%s'%(args.dataset,args.r,args.noise_mode)+'_acc.txt','w')
if args.dataset=='cifar10':
warm_up = 10
elif args.dataset=='cifar100':
warm_up = 30
loader = dataloader.cifar_dataloader(args.dataset,r=args.r,noise_mode=args.noise_mode,batch_size=args.batch_size,num_workers=5,\
root_dir=args.data_path,log=stats_log,noise_file='%s/%.1f_%s.json'%(args.data_path,args.r,args.noise_mode))
print('| Building net')
net1 = create_model()
net2 = create_model()
cudnn.benchmark = True
criterion = SemiLoss()
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
CE = nn.CrossEntropyLoss(reduction='none')
CEloss = nn.CrossEntropyLoss()
if args.noise_mode=='asym':
conf_penalty = NegEntropy()
all_loss = [[],[]] # save the history of losses from two networks
for epoch in range(args.num_epochs+1):
lr=args.lr
if epoch >= 150:
lr /= 10
for param_group in optimizer1.param_groups:
param_group['lr'] = lr
for param_group in optimizer2.param_groups:
param_group['lr'] = lr
test_loader = loader.run('test')
eval_loader = loader.run('eval_train')
if epoch<warm_up:
warmup_trainloader = loader.run('warmup')
print('Warmup Net1')
warmup(epoch,net1,optimizer1,warmup_trainloader)
print('\nWarmup Net2')
warmup(epoch,net2,optimizer2,warmup_trainloader)
else:
prob1,all_loss[0]=eval_train(net1,all_loss[0])
prob2,all_loss[1]=eval_train(net2,all_loss[1])
pred1 = (prob1 > args.p_threshold)
pred2 = (prob2 > args.p_threshold)
print('Train Net1')
labeled_trainloader, unlabeled_trainloader = loader.run('train',pred2,prob2) # co-divide
train(epoch,net1,net2,optimizer1,labeled_trainloader, unlabeled_trainloader) # train net1
print('\nTrain Net2')
labeled_trainloader, unlabeled_trainloader = loader.run('train',pred1,prob1) # co-divide
train(epoch,net2,net1,optimizer2,labeled_trainloader, unlabeled_trainloader) # train net2
test(epoch,net1,net2)