-
Notifications
You must be signed in to change notification settings - Fork 0
/
N2O_He_2D_PES.f.txt
315 lines (281 loc) · 10.1 KB
/
N2O_He_2D_PES.f.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
IMPLICIT REAL*8 (A-H,O-Z)
iv3=0 !iv3=0 and 1 for the ground and excited vibrational state of N2O correspondingly
C Initialized fitting parameters before calculation
CALL PARAREAD(iv3)
OPEN(11,FILE='he-n2o-pes.chk')
Do TH=0.0D0, 180.0D0, 15.0D0
DO R=3.D0, 10.0D0, .5D0
CALL HEN2OPES(R,TH,VCAL)
WRITE(11,663)TH,R,VCAL
ENDDO
ENDDO
663 FORMAT(1x,f8.2,f7.1,f20.4)
END
c=============================================
c***************************************************
SUBROUTINE HEN2OPES(R,TH,YC)
c***************************************************
c Subroutine to generate values of the vibrationally averaged
c 2D-MLR analyic potential energy surfaces for complexes formed
c between He and N2O isotopologues {14}N2{16}O in vibrational
c level v3= 0 or 1, as determined by:
c Lecheng Wang, Daiqian Xie, Pierre-Nicholas Roy,
c and Robert J. Le Roy [JCP, (2012, in press)].
c Before first call, call input subroutine pararead(iv3) for
c parameters(depend on the vibrational state (iv3) of N2O)
c of MLR functions;
c-------------------
c** Input variables:
c-------------------
c R - distance between N2O and He centre of mass in [Angst],
c pointing from the center of mass of N2O to He.
c TH - Jacobi angular coordinate 'theta' in degrees, which is the
c angle between the vector R pointing from the center of mass
c of N2O to He and the vector pointing from O atom to N.
c---------------------
c** Output: YC [cm-1] is the calculated interaction energy '\Delta{V}'.
c----------------------------------------------------
INTEGER MXDATA, MXPARM, NPMAX, MXN, MXL
PARAMETER (MXDATA=15000, MXPARM=80, NPMAX=20,MXN=20,MXL=20)
INTEGER NPHI(NPMAX),LCM(0:MXN),I,J,K,L,M,IP,
1 IDAT,NDATA,p,q,NDE,NRE,NCN,MCM,MMN,NS,NL,NPOW,NPS
REAL*8 R,TH,YC,PV(MXPARM),
1 Re,De,Vasy,RREF,AREF,AREFp,AREFq,Rep,CN,RC6,RCN,VLRe,
2 phiINF,RTPp,RTPq,yp,yq,ype,yPOW,XP,SUM,
3 XDE,XRE,VLR,XPW
REAL*8 Pn(0:NPMAX+1),PHI(NPMAX),RCM(MXN,0:MXL)
COMMON /DATABLK/RCM,RREF,CN,
1 NPHI,LCM,p,q,NDE,NRE,NCN,MCM,NS,NL,PV
c=======================================================================
c For the case of an MLR_{p} potential ...
c-----------------------------------------------------------------------
PI=DACOS(-1.0D0)
CTH=DCOS(TH*PI/180.0D0)
Pn(0)=1.
Pn(1)=CTH
DO I=1,NPMAX
Pn(I+1)=((2.0d0*I+1.0d0)*CTH*Pn(I)
1 -dfloat(I)*Pn(I-1))/dfloat(I+1)
ENDDO
c caculate the derivative of the parameters of De not including
c the coefficient before, only the Legendre expansion.
De=0.0d0
DO I=0,NDE-1
De=De+Pn(I)*PV(I+1)
ENDDO
c caculate the derivative of the parameters of Re not including
c the coefficient before, only the Legendre expansion.
Re=0.0d0
IP=NDE
DO I=0,NRE-1
IP=IP+1
Re=Re+Pn(I)*PV(IP)
ENDDO
AREF= RREF*Re
IF(RREF.LE.0.d0) AREF= Re
AREFp= AREF**p
AREFq= AREF**q
Rep= Re**p
c only included the C6 coefficient
RC6=0.0D0
DO L=0,LCM(NCN),2
RC6=RC6+RCM(NCN,L)*Pn(L)
ENDDO
VLRe= CN*RC6/Re**NCN
c included the higher order coefficients such as C7, C8, C9,C10 etc.
IF(MCM.GT.NCN) THEN
MMN=MCM-NCN
c IF(p.LE.MMN)THEN MMN=0
IF(MMN.GT.0) THEN
RCN=0.0D0
DO M=NCN,MCM
IF (MOD(M,2).eq.0) then
DO L=0,LCM(M),2
RCN=RCN+(RCM(M,L)*Pn(L))/Re**(M-NCN)
ENDDO
ELSE
DO L=1,LCM(M),2
RCN=RCN+(RCM(M,L)*Pn(L))/Re**(M-NCN)
ENDDO
ENDIF
ENDDO
VLRe= CN*RCN/Re**NCN
ENDIF
ENDIF
phiINF= DLOG(2.d0*De/VLRe)
RTPp= R**p
RTPq= R**q
yp= (RTPp - AREFp)/(RTPp + AREFp)
yq= (RTPq - AREFq)/(RTPq + AREFq)
ype= (RTPp - Rep)/(RTPp + Rep)
c caculate the derivative of the parameters of PHI(N) not including
c the coefficient before, the Legendre expansion and exponent expansion.
NPOW= NS+1
IF(R.GE.Re) NPOW= NL+1
yPOW= 1.d0 - yp
SUM=0.0
NPS=0
IP=NDE+NRE
DO J=1,NPOW
IP=IP+1
PHI(J)= PV(IP)*Pn(0)
DO K=2,NPHI(J)
IP=IP+1
PHI(J)=PHI(J)+ PV(IP)*Pn(K-1)
ENDDO
NPS=NPS+NPHI(J)
SUM=SUM+PHI(J)*yq**(J-1)
ENDDO
c caculate the derivative of the parameters of Vasy
IP=NDE+NRE+NPS
Vasy=PV(IP+1)
XP= SUM*yPOW+ phiINF*yp
c only included the C6 coefficient
VLR= CN*RC6/R**NCN
c included the higher order coefficients such as C7, C8, C9,C10 etc.
IF(MCM.GT.NCN) THEN
RCN=0.0D0
DO M=NCN,MCM
IF (MOD(M,2).eq.0) then
DO L=0,LCM(M),2
RCN=RCN+(RCM(M,L)*Pn(L))/R**(M-NCN)
ENDDO
ELSE
DO L=1,LCM(M),2
RCN=RCN+(RCM(M,L)*Pn(L))/R**(M-NCN)
ENDDO
ENDIF
ENDDO
VLR= CN*RCN/R**NCN
ENDIF
XPW= DEXP(-XP*ype) * VLR/VLRe
YC= De*(1.d0 - XPW)**2-De+Vasy
RETURN
END
c-----------------------------------------------------------------------
SUBROUTINE PARAREAD(iv3)
INTEGER MXDATA, MXPARM, NPMAX, MXN, MXL
PARAMETER (MXDATA=15000, MXPARM=80, NPMAX=20,MXN=20,MXL=20)
INTEGER iv3
CHARACTER*21 FNAME
CHARACTER*1 FA
CHARACTER*19 FB
PARAMETER (FA='v',FB='-hen2o-mlr-para.txt')
INTEGER NPHI(NPMAX),LCM(0:MXN),I,J,K,L,M,IP,
1 p,q,NDE,NRE,NCN,MCM,NS,NL,NPOW,NPS
REAL*8 PV(MXPARM),RCM(MXN,0:MXL)
REAL*8 RREF,CN,PI
C FOR GROUND AND EXCITED STATE OF N2O
REAL*8 VRCM(2,MXN,0:MXL)
REAL*8 VCN(2)
REAL*8 VPV(2,MXPARM)
COMMON /DATABLK/RCM,RREF,CN,
1 NPHI,LCM,p,q,NDE,NRE,NCN,MCM,NS,NL,PV
FNAME=FA//CHAR(iv3+48)//FB
OPEN(5,FILE=FNAME)
DATA NDE/19/
DATA NRE/15/
DATA p/5/
DATA q/3/
DATA NS/4/
DATA NL/4/
DATA RREF/0.D0/
DATA (NPHI(I),I=1,5) /9,7,5,3,1/
DATA NCN/6/
DATA (VCN(I),I=1,2) /7.7784785d4,7.8341258d4/
DATA MCM/10/
DATA (LCM(I),I=6,10,1) /2,3,4,5,6/
DATA (VRCM(1,6,I),I=0,2,2) /1.D0,0.30318942D0/
DATA (VRCM(1,7,I),I=1,3,2) /0.56341392D0,0.03768641/
DATA (VRCM(1,8,I),I=0,4,2) /7.60152758D0,14.34320982D0,
& 0.99323324D0/
DATA (VRCM(1,9,I),I=1,5,2) /10.14685721D0,7.30704469D0,
& 0.31895526D0/
DATA (VRCM(1,10,I),I=0,6,2) /61.70624065D0,149.39365362D0,
& 48.10951103D0,-0.24027865D0/
DATA (VRCM(2,6,I),I=0,2,2) /1.D0,0.30336186/
DATA (VRCM(2,7,I),I=1,3,2) /0.56341392,0.03768641/
DATA (VRCM(2,8,I),I=0,4,2) /7.60152758D0,14.34320982D0,
& 0.99323324D0/
DATA (VRCM(2,9,I),I=1,5,2) /10.14685721D0,7.30704469D0,
& 0.31895526D0/
DATA (VRCM(2,10,I),I=0,6,2) /61.70624065D0,149.39365362D0,
& 48.10951103D0,-0.24027865D0/
DATA (VPV(1,I),I=1,60) /
& 3.423600D+01, -3.299000D+00, -2.134900D+01,
& 5.300000D-01, 2.212000D+01, -4.540000D+00,
& -1.288000D+01, 3.090000D+00, 7.730000D+00,
& -2.670000D+00, -3.800000D+00, 1.750000D+00,
& 1.770000D+00, -1.100000D+00, -7.000000D-01,
& 5.800000D-01, 2.300000D-01, -1.800000D-01,
& -5.000000D-02, 3.633010D+00, 1.521000D-01,
& 9.496000D-01, 1.650000D-02, -3.549000D-01,
& 5.960000D-02, 1.245000D-01, -3.090000D-02,
& -4.170000D-02, 1.720000D-02, 3.900000D-03,
& -5.400000D-03, 5.300000D-03, 9.000000D-04,
& -4.100000D-03, -1.974000D-01, 1.130000D-01,
& 3.290000D-01, -2.000000D-03, 7.400000D-02,
& 1.700000D-02, -6.800000D-02, -8.000000D-03,
& 4.500000D-02, 2.280000D-01, -2.170000D-01,
& 2.790000D-01, 5.000000D-02, -5.000000D-02,
& -5.000000D-02, -1.000000D-02, -3.200000D-01,
& -6.500000D-01, 2.600000D-01, 3.000000D-02,
& -5.000000D-02, 5.700000D-01, -1.100000D+00,
& 4.000000D-01, -3.000000D-01, 0.000000D+00/
DATA (VPV(2,I),I=1,60) /
& 3.408000D+01, -3.340000D+00, -2.092400D+01,
& 6.100000D-01, 2.180000D+01, -4.630000D+00,
& -1.254000D+01, 3.120000D+00, 7.520000D+00,
& -2.680000D+00, -3.650000D+00, 1.740000D+00,
& 1.700000D+00, -1.090000D+00, -6.700000D-01,
& 5.800000D-01, 2.200000D-01, -1.800000D-01,
& -4.000000D-02, 3.636700D+00, 1.531000D-01,
& 9.476000D-01, 1.430000D-02, -3.536000D-01,
& 6.140000D-02, 1.222000D-01, -3.120000D-02,
& -4.110000D-02, 1.720000D-02, 3.600000D-03,
& -5.200000D-03, 5.400000D-03, 8.000000D-04,
& -4.000000D-03, -1.970000D-01, 1.130000D-01,
& 3.280000D-01, -3.000000D-03, 7.500000D-02,
& 1.700000D-02, -6.700000D-02, -8.000000D-03,
& 4.600000D-02, 2.250000D-01, -2.170000D-01,
& 2.710000D-01, 4.000000D-02, -4.000000D-02,
& -4.000000D-02, -2.000000D-02, -3.400000D-01,
& -6.400000D-01, 2.700000D-01, 4.000000D-02,
& -5.000000D-02, 6.100000D-01, -1.100000D+00,
& 5.000000D-01, -2.000000D-01, 0.000000D+00/
C FOR GROUND AND EXCITED VIBRATIONAL STATE OF N2O
IF(IV3.EQ.0) THEN
CN=VCN(1)
DO I=1,60
PV(I)=VPV(1,I)
ENDDO
DO J=NCN,MCM
IF (MOD(J,2).eq.0) then
DO I=0,LCM(J),2
RCM(J,I)=VRCM(1,J,I)
ENDDO
ELSE
DO I=1,LCM(J),2
RCM(J,I)=VRCM(1,J,I)
ENDDO
ENDIF
ENDDO
ELSE
CN=VCN(2)
DO I=1,60
PV(I)=VPV(2,I)
ENDDO
DO J=NCN,MCM
IF (MOD(J,2).eq.0) then
DO I=0,LCM(J),2
RCM(J,I)=VRCM(2,J,I)
ENDDO
ELSE
DO I=1,LCM(J),2
RCM(J,I)=VRCM(2,J,I)
ENDDO
ENDIF
ENDDO
ENDIF
RETURN
END