forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
35 lines (34 loc) · 1.19 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Collections:
- Name: Shufflenet V2
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
- No BN decay
Training Resources: 8x 1080 GPUs
Epochs: 300
Batch Size: 1024
Architecture:
- Shufflenet V2
Paper:
URL: https://openaccess.thecvf.com/content_ECCV_2018/papers/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.pdf
Title: "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
README: configs/shufflenet_v2/README.md
Code:
URL: https://github.com/open-mmlab/mmpretrain/blob/v0.15.0/mmcls/models/backbones/shufflenet_v2.py#L134
Version: v0.15.0
Models:
- Name: shufflenet-v2-1x_16xb64_in1k
Metadata:
FLOPs: 149000000
Parameters: 2280000
In Collection: Shufflenet V2
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 69.55
Top 5 Accuracy: 88.92
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth
Config: configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py