forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mobilenet-v3-small-075_8xb128_in1k.py
68 lines (60 loc) · 1.87 KB
/
mobilenet-v3-small-075_8xb128_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
_base_ = [
'../_base_/models/mobilenet_v3/mobilenet_v3_small_075_imagenet.py',
'../_base_/datasets/imagenet_bs128_mbv3.py',
'../_base_/default_runtime.py',
]
# model settings
model = dict(backbone=dict(norm_cfg=dict(type='BN', eps=1e-5, momentum=0.1)))
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='AutoAugment',
policies='imagenet',
hparams=dict(pad_val=[round(x) for x in [103.53, 116.28, 123.675]])),
dict(
type='RandomErasing',
erase_prob=0.2,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=1 / 3,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs'),
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
# schedule settings
optim_wrapper = dict(
optimizer=dict(
type='RMSprop',
lr=0.064,
alpha=0.9,
momentum=0.9,
eps=0.0316,
weight_decay=1e-5))
param_scheduler = dict(type='StepLR', by_epoch=True, step_size=2, gamma=0.973)
train_cfg = dict(by_epoch=True, max_epochs=600, val_interval=10)
val_cfg = dict()
test_cfg = dict()
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
# base_batch_size = (8 GPUs) x (128 samples per GPU)
auto_scale_lr = dict(base_batch_size=1024)