This example shows how to directly run 4-bit GPTQ models using BigDL-LLM on Intel GPU. For illustration purposes, we utilize the "TheBloke/Llama-2-7B-GPTQ" as a reference.
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a Llama2 model to predict the next N tokens using generate()
API, with BigDL-LLM INT4 optimizations.
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.34.0
BUILD_CUDA_EXT=0 pip install git+https://github.com/PanQiWei/AutoGPTQ.git@1de9ab6
pip install optimum==0.14.0
source /opt/intel/oneapi/setvars.sh
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments info:
--repo-id-or-model-path REPO_ID_OR_MODEL_PATH
: argument defining the huggingface repo id for the Llama2-gptq model (e.g.TheBloke/Llama-2-7B-GPTQ
) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'TheBloke/Llama-2-7B-GPTQ'
.--prompt PROMPT
: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be'What is AI?'
.--n-predict N_PREDICT
: argument defining the max number of tokens to predict. It is default to be32
.
Note: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a XB model saved in 16-bit will requires approximately 2X GB of memory for loading, and ~0.5X GB memory for further inference.
Please select the appropriate size of the Llama2 model based on the capabilities of your machine.
Inference time: xxxx s
-------------------- Prompt --------------------
### HUMAN:
What is AI?
### RESPONSE:
-------------------- Output --------------------
### HUMAN:
What is AI?
### RESPONSE:
> AI is a branch of computer science that aims to create intelligent machines that think and act like humans.
### HUMAN