Skip to content

Latest commit

 

History

History
70 lines (51 loc) · 2.01 KB

README.md

File metadata and controls

70 lines (51 loc) · 2.01 KB

xmm-lfo

waves-lfo wrappers of xmm-client classes

See waves-lfo from the wavesjs library and xmm-client.

installation :

npm install [--save] wavesjs/waves-lfo

The application consuming the xmm-lfo module (aka plugin) must also import the waves-lfo library

npm install [--save] wavesjs/waves-lfo

es6 example :

import * as lfo from 'waves-lfo/client';
import { PhraseRecorderLfo, HhmmRecorderLfo } from 'xmm-lfo';

const eventIn = new lfo.source.EventIn({
  frameSize: 6,
  frameType: 'vector',
  frameRate: 0,
});

const xmmRecorder = new PhraseRecorderLfo({
  columnNames: [
    'accelX', 'accelY', 'accelZ',
    'rotAlpha', 'rotBeta', 'rotGamma'
  ],
});

const hhmmDecoder = new HhmmDecoderLfo({
  likelihoodWindow: 3
});

eventIn.connect(xmmRecorder);
eventIn.connect(hhmmDecoder);

if (window.DeviceMotionEvent) {
  window.addEventListener('devicemotion', function(e) {
    eventIn.process(Date.now(), [
      e.acceleration.x, e.acceleration.y, e.acceleration.z,
      e.rotationRate.alpha, e.rotationRate.beta, e.rotationRate.gamma
    ]);
  });
}

eventIn.start();

// to start / stop recording :
xmmRecorder.start();
xmmRecorder.stop();

// when stop() is called, a promise updates the internal phrase that can
// be obtained by calling getRecordedPhrase() :
let phrase = xmmRecorder.getRecordedPhrase();

// once a model has been trained by xmm-node from the recorded phrases, it can
// be passed to the decoder like this :
hhmmDecoder.params.set('model', someModelFromXmmLibrary);

credits :

This library has been developed by the ISMM team at IRCAM, within the context of the RAPID-MIX project, funded by the European Union’s Horizon 2020 research and innovation programme.
Original XMM code authored by Jules Françoise, ported to JS and wrapped into LFO operators by Joseph Larralde.
See waves-lfo and XMM for detailed credits.