Skip to content

Latest commit

 

History

History
104 lines (70 loc) · 4.72 KB

File metadata and controls

104 lines (70 loc) · 4.72 KB

7.8 Adam算法

Adam算法在RMSProp算法基础上对小批量随机梯度也做了指数加权移动平均 [1]。下面我们来介绍这个算法。

所以Adam算法可以看做是RMSProp算法与动量法的结合。

7.8.1 算法

Adam算法使用了动量变量$\boldsymbol{v}_t$和RMSProp算法中小批量随机梯度按元素平方的指数加权移动平均变量$\boldsymbol{s}_t$,并在时间步0将它们中每个元素初始化为0。给定超参数$0 \leq \beta_1 < 1$(算法作者建议设为0.9),时间步$t$的动量变量$\boldsymbol{v}_t$即小批量随机梯度$\boldsymbol{g}_t$的指数加权移动平均:

$$\boldsymbol{v}t \leftarrow \beta_1 \boldsymbol{v}{t-1} + (1 - \beta_1) \boldsymbol{g}_t. $$

和RMSProp算法中一样,给定超参数$0 \leq \beta_2 < 1$(算法作者建议设为0.999), 将小批量随机梯度按元素平方后的项$\boldsymbol{g}_t \odot \boldsymbol{g}_t$做指数加权移动平均得到$\boldsymbol{s}_t$:

$$\boldsymbol{s}t \leftarrow \beta_2 \boldsymbol{s}{t-1} + (1 - \beta_2) \boldsymbol{g}_t \odot \boldsymbol{g}_t. $$

由于我们将$\boldsymbol{v}_0$和$\boldsymbol{s}_0$中的元素都初始化为0, 在时间步$t$我们得到$\boldsymbol{v}t = (1-\beta_1) \sum{i=1}^t \beta_1^{t-i} \boldsymbol{g}i$。将过去各时间步小批量随机梯度的权值相加,得到 $(1-\beta_1) \sum{i=1}^t \beta_1^{t-i} = 1 - \beta_1^t$。需要注意的是,当$t$较小时,过去各时间步小批量随机梯度权值之和会较小。例如,当$\beta_1 = 0.9$时,$\boldsymbol{v}_1 = 0.1\boldsymbol{g}_1$。为了消除这样的影响,对于任意时间步$t$,我们可以将$\boldsymbol{v}_t$再除以$1 - \beta_1^t$,从而使过去各时间步小批量随机梯度权值之和为1。这也叫作偏差修正。在Adam算法中,我们对变量$\boldsymbol{v}_t$和$\boldsymbol{s}_t$均作偏差修正:

$$\hat{\boldsymbol{v}}_t \leftarrow \frac{\boldsymbol{v}_t}{1 - \beta_1^t}, $$

$$\hat{\boldsymbol{s}}_t \leftarrow \frac{\boldsymbol{s}_t}{1 - \beta_2^t}. $$

接下来,Adam算法使用以上偏差修正后的变量$\hat{\boldsymbol{v}}_t$和$\hat{\boldsymbol{s}}_t$,将模型参数中每个元素的学习率通过按元素运算重新调整:

$$\boldsymbol{g}_t' \leftarrow \frac{\eta \hat{\boldsymbol{v}}_t}{\sqrt{\hat{\boldsymbol{s}}_t} + \epsilon},$$

其中$\eta$是学习率,$\epsilon$是为了维持数值稳定性而添加的常数,如$10^{-8}$。和AdaGrad算法、RMSProp算法以及AdaDelta算法一样,目标函数自变量中每个元素都分别拥有自己的学习率。最后,使用$\boldsymbol{g}_t'$迭代自变量:

$$\boldsymbol{x}t \leftarrow \boldsymbol{x}{t-1} - \boldsymbol{g}_t'. $$

7.8.2 从零开始实现

我们按照Adam算法中的公式实现该算法。其中时间步$t$通过hyperparams参数传入adam函数。

%matplotlib inline
import torch
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

features, labels = d2l.get_data_ch7()

def init_adam_states():
    v_w, v_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    return ((v_w, s_w), (v_b, s_b))

def adam(params, states, hyperparams):
    beta1, beta2, eps = 0.9, 0.999, 1e-6
    for p, (v, s) in zip(params, states):
        v[:] = beta1 * v + (1 - beta1) * p.grad.data
        s[:] = beta2 * s + (1 - beta2) * p.grad.data**2
        v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
        s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
        p.data -= hyperparams['lr'] * v_bias_corr / (torch.sqrt(s_bias_corr) + eps)
    hyperparams['t'] += 1

使用学习率为0.01的Adam算法来训练模型。

d2l.train_ch7(adam, init_adam_states(), {'lr': 0.01, 't': 1}, features, labels)

输出:

loss: 0.245370, 0.065155 sec per epoch

7.8.3 简洁实现

通过名称为“adam”的Trainer实例,我们便可使用Gluon提供的Adam算法。

d2l.train_pytorch_ch7(torch.optim.Adam, {'lr': 0.01}, features, labels)

输出:

loss: 0.242066, 0.056867 sec per epoch

小结

  • Adam算法在RMSProp算法的基础上对小批量随机梯度也做了指数加权移动平均。
  • Adam算法使用了偏差修正。

参考文献

[1] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.


注:除代码外本节与原书此节基本相同,原书传送门