-
Notifications
You must be signed in to change notification settings - Fork 1
/
app.py
397 lines (346 loc) · 14.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from share import *
import gradio as gr
import cv2
import PIL
import imageio
from functools import partial
from cldm.model import load_state_dict
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
import torch
from torchvision import transforms
from torch import autocast
import numpy as np
import math
from einops import rearrange
from pathlib import Path
import os, shutil
from omegaconf import OmegaConf
from contextlib import nullcontext
from PIL import Image
from einops import rearrange
# configure
from opt import get_opts
from pytorch_lightning import seed_everything
seed_everything(40)
device_idx = 0
device = torch.device(f'cuda:{device_idx}' if torch.cuda.is_available() else 'cpu')
class BackgroundRemoval:
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = Image.fromarray(image)
image = self.interface([image])[0]
image = np.array(image)
return image
def segment(mask_predictor, image=None, image_path=None):
if image is None:
assert image_path is not None, 'image_path is None and image is None'
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if isinstance(image, PIL.Image.Image):
image = np.array(image)
if image.shape[-1] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
rgba = mask_predictor(image) # [H, W, 4]
return Image.fromarray(cv2.cvtColor(rgba, cv2.COLOR_RGBA2BGRA))
def load_model_from_config(config, ckpt, device, verbose=True):
print(f'Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd:
print(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print('missing keys:')
print(m)
if len(u) > 0 and verbose:
print('unexpected keys:')
print(u)
model.to(device)
model.eval()
return model
@torch.no_grad()
def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_samples, prompt_scale, img_scale,
ddim_eta, T, use_ema_scope=False, prompt=None, img_ucg=0.05):
precision_scope = autocast if precision == 'autocast' else nullcontext
ema_scope = model.ema_scope if use_ema_scope else nullcontext
with precision_scope('cuda'):
with ema_scope('Sampling...'):
# hint
c_cat = input_im
# text
uc_cross = model.get_unconditional_conditioning(n_samples)
c = model.get_learned_conditioning(prompt)
# camera pose
delta_pose = T[None, :].repeat(n_samples, 1).to(c.device)
# concat for concat pipline
in_concat = model.encode_first_stage(((input_im*2-1).to(c.device))).mode().detach()
cond = {}
cond['delta_pose'] = delta_pose
cond['c_crossattn'] = [c]
cond['c_concat'] = [c_cat]
cond['in_concat'] = [in_concat]
# uc2 for prompt
uc2 = {}
uc2['delta_pose'] = delta_pose
uc2['c_crossattn'] = [uc_cross]
uc2['c_concat'] = [c_cat]
uc2['in_concat'] = [in_concat]
# uc for image
uc = {}
uc['delta_pose'] = delta_pose
uc['c_crossattn'] = [uc_cross]
uc['c_concat'] = [c_cat]
uc['in_concat'] = [in_concat*0]
shape = [4, h // 8, w // 8]
x_T = torch.randn(in_concat.shape, device=c.device)
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=img_scale,
unconditional_conditioning=uc,
unconditional_guidance_scale2=prompt_scale,
unconditional_conditioning2=uc2,
eta=ddim_eta,
x_T=x_T)
print(samples_ddim.shape)
x_samples_ddim = model.decode_first_stage(samples_ddim)
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
def load_model_from_config(config, ckpt, device, verbose=False):
print(f'Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd:
print(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print('missing keys:')
print(m)
if len(u) > 0 and verbose:
print('unexpected keys:')
print(u)
model.to(device)
model.eval()
return model
def get_model(config, device, ckpt='105000.ckpt'):
config = OmegaConf.load(config)
print('Instantiating LatentDiffusion...')
model = load_model_from_config(config, ckpt, device)
print('Done.')
return model
def preprocess_image(input_im):
'''
:param input_im (PIL Image).
:return input_im (H, W, 3) array in [0, 1].
'''
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
# (H, W, 4) array in [0, 1].
# old method: thresholding background, very important
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
# (smoothly transition foreground to white background based on alpha values)
if input_im.shape[-1] == 4:
alpha = input_im[:, :, 3:4]
white_im = np.ones_like(input_im)
input_im = alpha * input_im + (1.0 - alpha) * white_im
input_im = input_im[:, :, 0:3]
# (H, W, 3) array in [0, 1].
return input_im
# %%
def cartesian_to_spherical(xyz):
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
xy = xyz[:,0]**2 + xyz[:,1]**2
z = np.sqrt(xy + xyz[:,2]**2)
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
azimuth = np.arctan2(xyz[:,1], xyz[:,0])
return np.array([theta, azimuth, z])
def get_T(target_RT, cond_RT, pose_enc="freq"):
R, T = target_RT[:3, :3], target_RT[:, -1]
T_target = -R.T @ T
R, T = cond_RT[:3, :3], cond_RT[:, -1]
T_cond = -R.T @ T
theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
d_theta = theta_target - theta_cond
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
d_z = z_target - z_cond
if pose_enc == "freq":
d_T = torch.tensor([d_theta.item(), d_azimuth.item(), d_z.item()])
elif pose_enc == "identity":
d_T = torch.tensor([d_theta.item(), d_azimuth.item(), d_z.item()])
elif pose_enc == "zero":
d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
return d_T
def get_T_from_relative(x, y, z, pose_enc="freq")->torch.Tensor:
"""
Args:
x: relative polar degree
y: relative azimuth degree
z: relative distance
example:
(0., -90., 0.): left view
(0., 90., 0.): right view
(0., 180., 0.): back view
(-90., 0., 0.): top view
(90., 0., 0.): bottom view
"""
if pose_enc in ["freq","identity"]:
d_T = torch.tensor([math.radians(x), math.radians(y), z])
elif pose_enc == "zero":
d_T = torch.tensor([math.radians(x), math.sin(
math.radians(y)), math.cos(math.radians(y)), z])
else:
raise NotImplementedError
return d_T
def load_model(device, _hparams, sd_locked, only_mid_control, cfgs):
model = instantiate_from_config(cfgs.model)
model.load_state_dict(load_state_dict(_hparams.resume_path, location='cpu'))
# reweight noise scheduer
if _hparams.register_scheduler:
model.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.016)
model.learning_rate = _hparams.lr
model.sd_locked = sd_locked
model.only_mid_control = only_mid_control
model = model.to(device)
model.eval()
return model
_TITLE = "TOSS: High-quality Text-guided Novel View Synthesis from a Single Image🌈"
GRADIO_RES_DIR = "./outputs"
def generate_loop_views(
h, w, precision, n_samples,
use_ema_scope,
pose_enc,
ddim_steps,
ddim_eta,
model,
sampler,
cond_im,
prompt,
out_folder,
dx,
dy,
prompt_scale,
img_scale,
img_ucg=0.05,
):
# preprocess image
# cond_im = segment(segmentor, image=cond_im)
cond_im = preprocess_image(cond_im)
cond_im = transforms.ToTensor()(cond_im).unsqueeze(0).to(device)
# cond_im = cond_im * 2.0 - 1.0
cond_im = transforms.functional.resize(cond_im, [h, w])
# path for saving results
out_folder = os.path.join(GRADIO_RES_DIR, out_folder)
if not os.path.exists(out_folder):
os.makedirs(out_folder)
# generating ...
dz = 0.0 # assuming no change in distance
T = get_T_from_relative(dx, dy, dz, pose_enc)
x_samples_ddim = sample_model(cond_im, model, sampler, precision=precision,
prompt_scale=prompt_scale, img_scale=img_scale, \
n_samples=n_samples, ddim_steps=ddim_steps, ddim_eta=ddim_eta, T=T, h=h, w=w, \
use_ema_scope=use_ema_scope, prompt=prompt, img_ucg=img_ucg)
# save image
assert x_samples_ddim.shape[0] == 1
x_samples_ddim = x_samples_ddim[0].cpu().numpy()
x_samples_ddim = 255.0 * rearrange(x_samples_ddim, 'c h w -> h w c')
save_dir = out_folder
save_name = f'{prompt}.png' if len(prompt) > 0 else f'{dx}_{dy}.png'
Image.fromarray(x_samples_ddim.astype(np.uint8)).save(os.path.join(save_dir, save_name))
yield Image.fromarray(x_samples_ddim.astype(np.uint8))
def save_gif(save_dir):
save_dir = os.path.join(GRADIO_RES_DIR, save_dir)
images = []
total_views = len(list(Path(save_dir).glob('*.png')))
for i in range(total_views):
images.append(imageio.imread(os.path.join(save_dir, f'{i}.png')))
imageio.mimsave(os.path.join(save_dir, 'look_around.gif'), images, duration=0.1)
return os.path.join(save_dir, 'look_around.gif')
if __name__ == '__main__':
hparams = get_opts()
sd_locked = True
only_mid_control = False
hparams.model_cfg = "models/toss_vae.yaml"
hparams.resume_path = "ckpt/toss.ckpt"
h, w = 256, 256
precision = 'fp32'
n_samples = 1
use_ema_scope = True
pose_enc = hparams.pose_enc
ddim_steps = 75
ddim_eta = 1.0
# set config
cfgs = OmegaConf.load(hparams.model_cfg)
# save path
os.makedirs(GRADIO_RES_DIR, exist_ok=True)
# Load model
# First use cpu to load models. Pytorch Lightning will automatically move it to GPUs.
model = load_model(device, hparams, sd_locked, only_mid_control, cfgs)
# build model
sampler = DDIMSampler(model)
# init segmentor
segmentor = BackgroundRemoval()
demo = gr.Blocks(title=_TITLE)
with demo:
gr.Markdown('# ' + _TITLE)
gr.Markdown("- TOSS can generate high-quality images from arbitrary camera poses based on a single image of arbitrary objects.")
gr.Markdown("- If you find results are not aligned with the prompt, try to increase the CFG for Prompt.")
gr.Markdown("- If you find results are unsatisfied, try more times as we use random sampling.")
with gr.Row():
cond_im, prompt = None, None
with gr.Column(scale=0.5):
cond_img = gr.Image(type='pil', image_mode='RGBA', sources='upload',
label='Input image of single object')
# prompt
prompt = gr.Textbox(label='Prompt', interactive=True)
# saving
out_folder = gr.Textbox(label="Output Folder", interactive=True, placeholder="e.g. ./results")
# pose
dx = gr.Slider(-90, 90, 0, label="Relative Polar Degree", interactive=True)
dy = gr.Slider(-180, 180, 0, label="Relative Azimuth Degree", interactive=True)
prompt_scale = gr.Slider(0.0, 50.0, 5.0, label="CFG for Prompt", interactive=True)
img_scale = gr.Slider(0.0, 10.0, 3.0, label="CFG for Cond Image", interactive=True)
with gr.Column(scale=0.5):
# generate views
generate_button = gr.Button("Generate Views")
save_button = gr.Button("Save as GIF")
with gr.Column(scale=0.25):
novel_display = gr.Image(type="pil", label="Novel Views")
with gr.Column(scale=0.25):
gif_display = gr.Image(type="filepath", label="GIF")
generate_loop_views_fn = partial(generate_loop_views, h, w, precision, n_samples,
use_ema_scope, pose_enc, ddim_steps, ddim_eta, model, sampler)
generate_button.click(
fn=generate_loop_views_fn,
inputs=[cond_img, prompt, out_folder, dx, dy, prompt_scale, img_scale],
outputs=novel_display
)
save_button.click(
fn=save_gif,
inputs=[out_folder],
outputs=gif_display
)
demo.queue()
demo.launch(share=True, server_name="0.0.0.0", server_port=8501)