-
Notifications
You must be signed in to change notification settings - Fork 43
/
train_net.py
471 lines (409 loc) · 18.2 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# ------------------------------------------------------------------------
# Copyright (c) 2023 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# by Feng Li and Hao Zhang.
# ------------------------------------------------------------------------
"""
OpenSeed Training Script based on MaskDINO.
"""
try:
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import sys
import copy
import itertools
import logging
import os
import time
from collections import OrderedDict
from typing import Any, Dict, List, Set
from fvcore.nn.precise_bn import get_bn_modules
import torch
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg, CfgNode
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from detectron2.config import LazyConfig, instantiate
from utils.arguments import load_opt_command
from detectron2.utils.comm import get_world_size, is_main_process
# MaskDINO
from datasets import (
build_train_dataloader,
build_evaluator,
build_eval_dataloader,
)
import random
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
hooks,
launch,
create_ddp_model,
AMPTrainer,
SimpleTrainer
)
import weakref
from openseed import build_model
from openseed.BaseModel import BaseModel
logger = logging.getLogger(__name__)
logging.basicConfig(level = logging.INFO)
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class adapted to MaskFormer.
"""
def __init__(self, cfg):
super(DefaultTrainer, self).__init__()
logger = logging.getLogger("detectron2")
if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
setup_logger()
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
optimizer = self.build_optimizer(cfg, model)
data_loader = self.build_train_loader(cfg)
model = create_ddp_model(model, broadcast_buffers=False)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
model, data_loader, optimizer
)
self.scheduler = self.build_lr_scheduler(cfg, optimizer)
# add model EMA
kwargs = {
'trainer': weakref.proxy(self),
}
# kwargs.update(model_ema.may_get_ema_checkpointer(cfg, model)) TODO: release ema training for large models
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg['OUTPUT_DIR'],
**kwargs,
)
self.start_iter = 0
self.max_iter = cfg['SOLVER']['MAX_ITER']
self.cfg = cfg
self.register_hooks(self.build_hooks())
# TODO: release model conversion checkpointer from DINO to MaskDINO
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg['OUTPUT_DIR'],
**kwargs,
)
# TODO: release GPU cluster submit scripts based on submitit for multi-node training
def build_hooks(self):
"""
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = copy.deepcopy(self.cfg)
# cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
None,
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=20))
return ret
@classmethod
def build_model(cls, cfg):
"""
Returns:
torch.nn.Module:
It now calls :func:`detectron2.modeling.build_model`.
Overwrite it if you'd like a different model.
"""
model = BaseModel(cfg, build_model(cfg)).cuda()
logger = logging.getLogger(__name__)
logger.info("Model:\n{}".format(model))
return model
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
return build_evaluator(cfg, dataset_name, output_folder=output_folder)
@classmethod
def build_train_loader(cls, cfg):
return build_train_dataloader(cfg, )
@classmethod
def build_test_loader(cls, cfg, dataset_name):
loader = build_eval_dataloader(cfg, )
return loader
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
cfg_solver = cfg['SOLVER']
weight_decay_norm = cfg_solver['WEIGHT_DECAY_NORM']
weight_decay_embed = cfg_solver['WEIGHT_DECAY_EMBED']
weight_decay_bias = cfg_solver.get('WEIGHT_DECAY_BIAS', 0.0)
defaults = {}
defaults["lr"] = cfg_solver['BASE_LR']
defaults["weight_decay"] = cfg_solver['WEIGHT_DECAY']
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
lr_multiplier = cfg['SOLVER']['LR_MULTIPLIER']
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
for key, lr_mul in lr_multiplier.items():
if key in "{}.{}".format(module_name, module_param_name):
hyperparams["lr"] = hyperparams["lr"] * lr_mul
if is_main_process():
logger.info("Modify Learning rate of {}: {}".format(
"{}.{}".format(module_name, module_param_name), lr_mul))
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
if "bias" in module_name:
hyperparams["weight_decay"] = weight_decay_bias
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg_solver['CLIP_GRADIENTS']['CLIP_VALUE']
enable = (
cfg_solver['CLIP_GRADIENTS']['ENABLED']
and cfg_solver['CLIP_GRADIENTS']['CLIP_TYPE'] == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg_solver['OPTIMIZER']
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg_solver['BASE_LR'], momentum=cfg_solver['MOMENTUM']
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg_solver['BASE_LR']
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
return optimizer
@staticmethod
def auto_scale_workers(cfg, num_workers: int):
"""
Returns:
CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``.
"""
old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE
if old_world_size == 0 or old_world_size == num_workers:
return cfg
cfg = copy.deepcopy(cfg)
# frozen = cfg.is_frozen()
# cfg.defrost()
assert (
cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0
), "Invalid REFERENCE_WORLD_SIZE in config!"
scale = num_workers / old_world_size
bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale))
lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale
max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale))
warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale))
cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS)
cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale))
cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale))
cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers # maintain invariant
logger = logging.getLogger(__name__)
logger.info(
f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, "
f"max_iter={max_iter}, warmup={warmup_iter}."
)
return cfg
@classmethod
def test(cls, cfg, model, evaluators=None):
from utils.misc import hook_metadata, hook_switcher, hook_opt
from openseed.utils import get_class_names
from detectron2.utils.logger import log_every_n_seconds
import datetime
# build dataloade
dataloaders = cls.build_test_loader(cfg, dataset_name=None)
dataset_names = cfg['DATASETS']['TEST']
model = model.eval().cuda()
model_without_ddp = model
if not type(model) == BaseModel:
model_without_ddp = model.module
for dataloader, dataset_name in zip(dataloaders, dataset_names):
# build evaluator
evaluator = build_evaluator(cfg, dataset_name, cfg['OUTPUT_DIR'])
evaluator.reset()
with torch.no_grad():
# setup model
names = get_class_names(dataset_name, cfg['MODEL'].get('BACKGROUND', True))
# names = get_class_names(dataset_name)
model_without_ddp.model.metadata = MetadataCatalog.get(dataset_name)
eval_type = model_without_ddp.model.metadata.evaluator_type
if 'background' in names:
model_without_ddp.model.sem_seg_head.num_classes = len(names) - 1
else:
model_without_ddp.model.sem_seg_head.num_classes = len(names)
model_without_ddp.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(names, is_eval=True)
hook_switcher(model_without_ddp, dataset_name)
# hook_opt(model, dataset_name)
# setup task
task = 'seg'
# setup timer
total = len(dataloader)
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_data_time = time.perf_counter()
for idx, batch in enumerate(dataloader):
total_data_time += time.perf_counter() - start_data_time
if idx == num_warmup:
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_compute_time = time.perf_counter()
# forward
with torch.autocast(device_type='cuda', dtype=torch.float16):
# import ipdb; ipdb.set_trace()
outputs = model(batch, inference_task=task)
total_compute_time += time.perf_counter() - start_compute_time
start_eval_time = time.perf_counter()
evaluator.process(batch, outputs)
total_eval_time += time.perf_counter() - start_eval_time
iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
data_seconds_per_iter = total_data_time / iters_after_start
compute_seconds_per_iter = total_compute_time / iters_after_start
eval_seconds_per_iter = total_eval_time / iters_after_start
total_seconds_per_iter = (time.perf_counter() - start_time) / iters_after_start
if is_main_process() and (idx >= num_warmup * 2 or compute_seconds_per_iter > 5):
eta = datetime.timedelta(seconds=int(total_seconds_per_iter * (total - idx - 1)))
log_every_n_seconds(
logging.INFO,
(
f"Inference done {idx + 1}/{total}. "
f"Dataloading: {data_seconds_per_iter:.4f} s/iter. "
f"Inference: {compute_seconds_per_iter:.4f} s/iter. "
f"Eval: {eval_seconds_per_iter:.4f} s/iter. "
f"Total: {total_seconds_per_iter:.4f} s/iter. "
f"ETA={eta}"
),
n=5,
)
start_data_time = time.perf_counter()
# evaluate
results = evaluator.evaluate()
model = model.train().cuda()
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="maskdino")
return cfg
def main(args=None):
cfg = setup(args)
print("Command cfg:", cfg)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
if args.original_load:
print("using original loading")
model = model.from_pretrained(cfg.MODEL.WEIGHTS)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
return res
trainer = Trainer(cfg)
if len(args.lang_weight) > 0:
# load language weight for semantic
import copy
weight = copy.deepcopy(trainer.cfg.MODEL.WEIGHTS)
trainer.cfg.MODEL.WEIGHTS = args.lang_weight
print("load original language language weight!!!!!!")
# trainer.resume_or_load(resume=args.resume)
trainer._trainer.model.module = trainer._trainer.model.module.from_pretrained(cfg.MODEL.WEIGHTS)
trainer.cfg.MODEL.WEIGHTS = weight
print("load pretrained model weight!!!!!!")
trainer.resume_or_load(resume=args.resume)
if args.original_load: # loading checkpoints with different name prefix
print("using original loading")
try:
trainer._trainer.model.module = trainer._trainer.model.module.from_pretrained(cfg.MODEL.WEIGHTS)
except Exception as e: # for debugging
trainer._trainer.model = trainer._trainer.model.from_pretrained(cfg.MODEL.WEIGHTS)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument('--eval_only', action='store_true')
parser.add_argument('--original_load', action='store_true')
parser.add_argument('--lang_weight', type=str, default='')
parser.add_argument('--EVAL_FLAG', type=int, default=1)
args = parser.parse_args()
port = random.randint(1000, 20000)
args.dist_url = 'tcp://127.0.0.1:' + str(port)
print("Command Line Args:", args)
print("pwd:", os.getcwd())
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)