-
Notifications
You must be signed in to change notification settings - Fork 113
/
grounded_sam2_tracking_demo_with_gd1.5.py
221 lines (174 loc) · 7.33 KB
/
grounded_sam2_tracking_demo_with_gd1.5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# dds cloudapi for Grounding DINO 1.5
from dds_cloudapi_sdk import Config
from dds_cloudapi_sdk import Client
from dds_cloudapi_sdk import DetectionTask
from dds_cloudapi_sdk import TextPrompt
from dds_cloudapi_sdk import DetectionModel
from dds_cloudapi_sdk import DetectionTarget
import os
import cv2
import torch
import numpy as np
import supervision as sv
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from utils.track_utils import sample_points_from_masks
from utils.video_utils import create_video_from_images
"""
Step 1: Environment settings and model initialization for SAM 2
"""
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# init sam image predictor and video predictor model
sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint)
image_predictor = SAM2ImagePredictor(sam2_image_model)
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
video_dir = "notebooks/videos/bedroom"
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(video_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png", ".PNG"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
# init video predictor state
inference_state = video_predictor.init_state(video_path=video_dir)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
"""
Step 2: Prompt Grounding DINO 1.5 with Cloud API for box coordinates
"""
# prompt grounding dino to get the box coordinates on specific frame
img_path = os.path.join(video_dir, frame_names[ann_frame_idx])
image = Image.open(img_path)
# Step 1: initialize the config
token = "Your API token"
config = Config(token)
# Step 2: initialize the client
client = Client(config)
# Step 3: run the task by DetectionTask class
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
# if you are processing local image file, upload them to DDS server to get the image url
image_url = client.upload_file(img_path)
task = DetectionTask(
image_url=image_url,
prompts=[TextPrompt(text="children. pillow")],
targets=[DetectionTarget.BBox], # detect bbox
model=DetectionModel.GDino1_5_Pro, # detect with GroundingDino-1.5-Pro model
bbox_threshold=0.2,
)
client.run_task(task)
result = task.result
objects = result.objects # the list of detected objects
input_boxes = []
confidences = []
class_names = []
for idx, obj in enumerate(objects):
input_boxes.append(obj.bbox)
confidences.append(obj.score)
class_names.append(obj.category)
input_boxes = np.array(input_boxes)
print(input_boxes)
# prompt SAM image predictor to get the mask for the object
image_predictor.set_image(np.array(image.convert("RGB")))
# process the detection results
OBJECTS = class_names
print(OBJECTS)
# prompt SAM 2 image predictor to get the mask for the object
masks, scores, logits = image_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
# convert the mask shape to (n, H, W)
if masks.ndim == 3:
masks = masks[None]
scores = scores[None]
logits = logits[None]
elif masks.ndim == 4:
masks = masks.squeeze(1)
"""
Step 3: Register each object's positive points to video predictor with seperate add_new_points call
"""
PROMPT_TYPE_FOR_VIDEO = "box" # or "point"
assert PROMPT_TYPE_FOR_VIDEO in ["point", "box", "mask"], "SAM 2 video predictor only support point/box/mask prompt"
# If you are using point prompts, we uniformly sample positive points based on the mask
if PROMPT_TYPE_FOR_VIDEO == "point":
# sample the positive points from mask for each objects
all_sample_points = sample_points_from_masks(masks=masks, num_points=10)
for object_id, (label, points) in enumerate(zip(OBJECTS, all_sample_points), start=1):
labels = np.ones((points.shape[0]), dtype=np.int32)
_, out_obj_ids, out_mask_logits = video_predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=object_id,
points=points,
labels=labels,
)
# Using box prompt
elif PROMPT_TYPE_FOR_VIDEO == "box":
for object_id, (label, box) in enumerate(zip(OBJECTS, input_boxes), start=1):
_, out_obj_ids, out_mask_logits = video_predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=object_id,
box=box,
)
# Using mask prompt is a more straightforward way
elif PROMPT_TYPE_FOR_VIDEO == "mask":
for object_id, (label, mask) in enumerate(zip(OBJECTS, masks), start=1):
labels = np.ones((1), dtype=np.int32)
_, out_obj_ids, out_mask_logits = video_predictor.add_new_mask(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=object_id,
mask=mask
)
else:
raise NotImplementedError("SAM 2 video predictor only support point/box/mask prompts")
"""
Step 4: Propagate the video predictor to get the segmentation results for each frame
"""
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
"""
Step 5: Visualize the segment results across the video and save them
"""
save_dir = "./tracking_results"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
ID_TO_OBJECTS = {i: obj for i, obj in enumerate(OBJECTS, start=1)}
for frame_idx, segments in video_segments.items():
img = cv2.imread(os.path.join(video_dir, frame_names[frame_idx]))
object_ids = list(segments.keys())
masks = list(segments.values())
masks = np.concatenate(masks, axis=0)
detections = sv.Detections(
xyxy=sv.mask_to_xyxy(masks), # (n, 4)
mask=masks, # (n, h, w)
class_id=np.array(object_ids, dtype=np.int32),
)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(annotated_frame, detections=detections, labels=[ID_TO_OBJECTS[i] for i in object_ids])
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite(os.path.join(save_dir, f"annotated_frame_{frame_idx:05d}.jpg"), annotated_frame)
"""
Step 6: Convert the annotated frames to video
"""
output_video_path = "./children_tracking_demo_video.mp4"
create_video_from_images(save_dir, output_video_path)