-
Notifications
You must be signed in to change notification settings - Fork 0
/
blindClusteringComparison.m
53 lines (37 loc) · 1.4 KB
/
blindClusteringComparison.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
clear all, close all
disp('Make sure the right data is saved in the lazy mat file')
r = RGCclass(0);
r.lazyLoad();
% Do a blind clustering using all features
% Do a blind clustering using the selected feature subsets
featSetAll = {'ALL', ...
setdiff(r.allFeatureNames, {'meanAxonThickness','dendriticVAChT'})};
featSet1 = { 'DD-SA-DF-BSD', ...
{ 'dendriticDensity', ...
'somaArea', ...
'dendriticField', ...
'biStratificationDistance'}};
featSet2 = { 'DD-SA-FD-BA', ...
{ 'dendriticDensity', ...
'somaArea', ...
'fractalDimensionBoxCounting', ...
'meanBranchAngle'}};
featSet3 = { 'DD-SA-FD-DF', ...
{ 'dendriticDensity', ...
'somaArea', ...
'fractalDimensionBoxCounting', ...
'dendriticField'}};
featSet4 = { 'DD-SA-TDL-TSL', ...
{ 'dendriticDensity', ...
'somaArea', ...
'totalDendriticLength', ...
'meanTerminalSegmentLength'}};
featSets = {featSetAll,featSet1,featSet2,featSet3,featSet4};
for i = 1:numel(featSets)
setName = featSets{i}{1};
feats = featSets{i}{2};
r.setFeatureMat(feats);
[kBestAll{i},clusterID{i}] = r.optimizeBlindClusterNumber(2:11);
fName = sprintf('FIGS/Silhouette-for-feature-set-%s.pdf', setName);
saveas(gcf,fName,'pdf')
end