-
Notifications
You must be signed in to change notification settings - Fork 28
/
engine.py
289 lines (254 loc) · 10.3 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# ------------------------------------------------------------------------
# H-DETR
# Copyright (c) 2022 Peking University & Microsoft Research Asia. All Rights Reserved.
# Licensed under the MIT-style license found in the LICENSE file in the root directory
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
Train and eval functions used in main.py
"""
import math
import os
import sys
from typing import Iterable
import copy
import wandb
import torch
import util.misc as utils
from datasets.coco_eval import CocoEvaluator
from datasets.panoptic_eval import PanopticEvaluator
from datasets.data_prefetcher import data_prefetcher
scaler = torch.cuda.amp.GradScaler()
def train_hybrid(outputs, targets, k_one2many, criterion, lambda_one2many):
# one-to-one-loss
loss_dict = criterion(outputs, targets)
multi_targets = copy.deepcopy(targets)
# repeat the targets
for target in multi_targets:
target["boxes"] = target["boxes"].repeat(k_one2many, 1)
target["labels"] = target["labels"].repeat(k_one2many)
outputs_one2many = dict()
outputs_one2many["pred_logits"] = outputs["pred_logits_one2many"]
outputs_one2many["pred_boxes"] = outputs["pred_boxes_one2many"]
outputs_one2many["aux_outputs"] = outputs["aux_outputs_one2many"]
# one-to-many loss
loss_dict_one2many = criterion(outputs_one2many, multi_targets)
for key, value in loss_dict_one2many.items():
if key + "_one2many" in loss_dict.keys():
loss_dict[key + "_one2many"] += value * lambda_one2many
else:
loss_dict[key + "_one2many"] = value * lambda_one2many
return loss_dict
def train_one_epoch(
model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
max_norm: float = 0,
k_one2many=1,
lambda_one2many=1.0,
use_wandb=False,
use_fp16=False,
):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
metric_logger.add_meter(
"class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
metric_logger.add_meter(
"grad_norm", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
header = "Epoch: [{}]".format(epoch)
print_freq = 10
prefetcher = data_prefetcher(data_loader, device, prefetch=True)
samples, targets = prefetcher.next()
# for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
for _ in metric_logger.log_every(range(len(data_loader)), print_freq, header):
with torch.cuda.amp.autocast() if use_fp16 else torch.cuda.amp.autocast(
enabled=False
):
if use_fp16:
optimizer.zero_grad()
outputs = model(samples)
if k_one2many > 0:
loss_dict = train_hybrid(
outputs, targets, k_one2many, criterion, lambda_one2many
)
else:
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(
loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict
)
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
if use_fp16:
scaler.scale(losses).backward()
scaler.unscale_(optimizer)
else:
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
grad_total_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm
)
else:
grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
if use_fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
metric_logger.update(
loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled
)
metric_logger.update(class_error=loss_dict_reduced["class_error"])
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(grad_norm=grad_total_norm)
samples, targets = prefetcher.next()
if use_wandb:
try:
wandb.log(loss_dict)
except:
pass
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(
model,
criterion,
postprocessors,
data_loader,
base_ds,
device,
output_dir,
use_wandb=False,
):
# disable the one-to-many branch queries
# save them frist
save_num_queries = model.module.num_queries
save_two_stage_num_proposals = model.module.transformer.two_stage_num_proposals
model.module.num_queries = model.module.num_queries_one2one
model.module.transformer.two_stage_num_proposals = model.module.num_queries
model.eval()
criterion.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
"class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}")
)
header = "Test:"
iou_types = tuple(k for k in ("segm", "bbox") if k in postprocessors.keys())
coco_evaluator = CocoEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
panoptic_evaluator = None
if "panoptic" in postprocessors.keys():
panoptic_evaluator = PanopticEvaluator(
data_loader.dataset.ann_file,
data_loader.dataset.ann_folder,
output_dir=os.path.join(output_dir, "panoptic_eval"),
)
for samples, targets in metric_logger.log_every(data_loader, 10, header):
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_scaled = {
k: v * weight_dict[k]
for k, v in loss_dict_reduced.items()
if k in weight_dict
}
loss_dict_reduced_unscaled = {
f"{k}_unscaled": v for k, v in loss_dict_reduced.items()
}
metric_logger.update(
loss=sum(loss_dict_reduced_scaled.values()),
**loss_dict_reduced_scaled,
**loss_dict_reduced_unscaled,
)
metric_logger.update(class_error=loss_dict_reduced["class_error"])
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocessors["bbox"](outputs, orig_target_sizes)
if "segm" in postprocessors.keys():
target_sizes = torch.stack([t["size"] for t in targets], dim=0)
results = postprocessors["segm"](
results, outputs, orig_target_sizes, target_sizes
)
res = {
target["image_id"].item(): output
for target, output in zip(targets, results)
}
if coco_evaluator is not None:
coco_evaluator.update(res)
if panoptic_evaluator is not None:
res_pano = postprocessors["panoptic"](
outputs, target_sizes, orig_target_sizes
)
for i, target in enumerate(targets):
image_id = target["image_id"].item()
file_name = f"{image_id:012d}.png"
res_pano[i]["image_id"] = image_id
res_pano[i]["file_name"] = file_name
panoptic_evaluator.update(res_pano)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
if panoptic_evaluator is not None:
panoptic_evaluator.synchronize_between_processes()
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
panoptic_res = None
if panoptic_evaluator is not None:
panoptic_res = panoptic_evaluator.summarize()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if coco_evaluator is not None:
if "bbox" in postprocessors.keys():
stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist()
if "segm" in postprocessors.keys():
stats["coco_eval_masks"] = coco_evaluator.coco_eval["segm"].stats.tolist()
if panoptic_res is not None:
stats["PQ_all"] = panoptic_res["All"]
stats["PQ_th"] = panoptic_res["Things"]
stats["PQ_st"] = panoptic_res["Stuff"]
if use_wandb:
try:
wandb.log({"AP": stats["coco_eval_bbox"][0]})
wandb.log(stats)
except:
pass
# recover the model parameters for next training epoch
model.module.num_queries = save_num_queries
model.module.transformer.two_stage_num_proposals = save_two_stage_num_proposals
return stats, coco_evaluator