diff --git a/.gitignore b/.gitignore
index 20404fe4..2709347a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -4,6 +4,7 @@ stores/
mlflow/
results/
workspaces/
+efs/
# VSCode
.vscode/
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index 14eba51f..2b188ae7 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -2,7 +2,7 @@
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
- rev: v4.4.0
+ rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
diff --git a/Makefile b/Makefile
index c7396272..ca840bd1 100644
--- a/Makefile
+++ b/Makefile
@@ -12,6 +12,7 @@ style:
# Cleaning
.PHONY: clean
clean: style
+ python notebooks/clear_cell_nums.py
find . -type f -name "*.DS_Store" -ls -delete
find . | grep -E "(__pycache__|\.pyc|\.pyo)" | xargs rm -rf
find . | grep -E ".pytest_cache" | xargs rm -rf
diff --git a/README.md b/README.md
index f9b1e0e5..2d6fe872 100644
--- a/README.md
+++ b/README.md
@@ -83,7 +83,7 @@ We'll start by setting up our cluster with the environment and compute configura
- Project: `madewithml`
- Cluster environment name: `madewithml-cluster-env`
# Toggle `Select from saved configurations`
- - Compute config: `madewithml-cluster-compute`
+ - Compute config: `madewithml-cluster-compute-g5.4xlarge`
```
> Alternatively, we can use the [CLI](https://docs.anyscale.com/reference/anyscale-cli) to create the workspace via `anyscale workspace create ...`
@@ -423,7 +423,7 @@ anyscale cluster-env build deploy/cluster_env.yaml --name $CLUSTER_ENV_NAME
The compute configuration determines **what** resources our workloads will be executes on. We've already created this [compute configuration](./deploy/cluster_compute.yaml) for us but this is how we can create it ourselves.
```bash
-export CLUSTER_COMPUTE_NAME="madewithml-cluster-compute"
+export CLUSTER_COMPUTE_NAME="madewithml-cluster-compute-g5.4xlarge"
anyscale cluster-compute create deploy/cluster_compute.yaml --name $CLUSTER_COMPUTE_NAME
```
diff --git a/deploy/cluster_compute.yaml b/deploy/cluster_compute.yaml
index 91e40c7e..3a8bef6d 100644
--- a/deploy/cluster_compute.yaml
+++ b/deploy/cluster_compute.yaml
@@ -1,12 +1,12 @@
-cloud: madewithml-us-east-2
-region: us-east2
+cloud: education-us-west-2
+region: us-west-2
head_node_type:
name: head_node_type
- instance_type: m5.2xlarge # 8 CPU, 0 GPU, 32 GB RAM
+ instance_type: g5.4xlarge
worker_node_types:
- name: gpu_worker
- instance_type: g4dn.xlarge # 4 CPU, 1 GPU, 16 GB RAM
- min_workers: 0
+ instance_type: g5.4xlarge
+ min_workers: 1
max_workers: 1
use_spot: False
aws:
diff --git a/deploy/cluster_env.yaml b/deploy/cluster_env.yaml
index 3ba9b1f1..14ba9e26 100644
--- a/deploy/cluster_env.yaml
+++ b/deploy/cluster_env.yaml
@@ -1,4 +1,4 @@
-base_image: anyscale/ray:2.6.0-py310-cu118
+base_image: anyscale/ray:2.7.0optimized-py310-cu118
env_vars: {}
debian_packages:
- curl
diff --git a/deploy/jobs/workloads.sh b/deploy/jobs/workloads.sh
index 4778ea12..c7cb3ef5 100644
--- a/deploy/jobs/workloads.sh
+++ b/deploy/jobs/workloads.sh
@@ -1,6 +1,5 @@
#!/bin/bash
export PYTHONPATH=$PYTHONPATH:$PWD
-export RAY_AIR_REENABLE_DEPRECATED_SYNC_TO_HEAD_NODE=1
mkdir results
# Test data
diff --git a/madewithml/config.py b/madewithml/config.py
index 4b1849eb..2de5eb6b 100644
--- a/madewithml/config.py
+++ b/madewithml/config.py
@@ -11,6 +11,11 @@
LOGS_DIR = Path(ROOT_DIR, "logs")
LOGS_DIR.mkdir(parents=True, exist_ok=True)
EFS_DIR = Path(f"/efs/shared_storage/madewithml/{os.environ.get('GITHUB_USERNAME', '')}")
+try:
+ Path(EFS_DIR).mkdir(parents=True, exist_ok=True)
+except OSError:
+ EFS_DIR = Path(ROOT_DIR, "efs")
+ Path(EFS_DIR).mkdir(parents=True, exist_ok=True)
# Config MLflow
MODEL_REGISTRY = Path(f"{EFS_DIR}/mlflow")
diff --git a/notebooks/benchmarks.ipynb b/notebooks/benchmarks.ipynb
index e3f91e76..0d8a7ebf 100644
--- a/notebooks/benchmarks.ipynb
+++ b/notebooks/benchmarks.ipynb
@@ -58,7 +58,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "e2c96931-d511-4c6e-b582-87d24455a11e",
"metadata": {
"tags": []
@@ -79,7 +79,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "953a577e-3cd0-4c6b-81f9-8bc32850214d",
"metadata": {
"tags": []
@@ -101,7 +101,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "1790e2f5-6b8b-425c-8842-a2b0ea8f3f07",
"metadata": {
"tags": []
@@ -113,7 +113,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "6b9bfadb-ba49-4f5a-b216-4db14c8888ab",
"metadata": {
"tags": []
@@ -208,7 +208,7 @@
"4 A PyTorch Implementation of \"Watch Your Step: ... other "
]
},
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -222,7 +222,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "aa5b95d5-d61e-48e4-9100-d9d2fc0d53fa",
"metadata": {
"tags": []
@@ -234,7 +234,7 @@
"['computer-vision', 'other', 'natural-language-processing', 'mlops']"
]
},
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -247,7 +247,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"id": "3c828129-8248-4e38-93a4-cabb097e7ba5",
"metadata": {
"tags": []
@@ -279,7 +279,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"id": "8e3c3f44-2c19-4c32-9bc5-e9a7a917d19d",
"metadata": {},
"outputs": [],
@@ -295,7 +295,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"id": "4950bdb4",
"metadata": {},
"outputs": [
@@ -337,7 +337,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"id": "b2aae14c-9870-4a27-b5ad-90f339686620",
"metadata": {
"tags": []
@@ -364,7 +364,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"id": "03ee23e5",
"metadata": {},
"outputs": [
@@ -401,7 +401,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"id": "71c43e8c",
"metadata": {},
"outputs": [
@@ -416,7 +416,7 @@
" 'description': 'A PyTorch implementation of \"Capsule Graph Neural Network\" (ICLR 2019).'}]"
]
},
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -429,7 +429,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"id": "c9359a91-ac19-48a4-babb-e65d53f39b42",
"metadata": {
"tags": []
@@ -462,7 +462,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"id": "5fac795e",
"metadata": {},
"outputs": [
@@ -486,7 +486,7 @@
"['other', 'computer-vision', 'computer-vision']"
]
},
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -507,7 +507,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"id": "e4cb38a8-44cb-4cea-828c-590f223d4063",
"metadata": {
"tags": []
@@ -543,7 +543,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"id": "de2d0416",
"metadata": {},
"outputs": [],
@@ -576,7 +576,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"id": "ff3c37fb",
"metadata": {},
"outputs": [],
@@ -618,7 +618,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"id": "972fee2f-86e2-445e-92d0-923f5690132a",
"metadata": {},
"outputs": [],
@@ -647,7 +647,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"id": "9ee4e745-ef56-4b76-8230-fcbe56ac46aa",
"metadata": {
"tags": []
@@ -663,7 +663,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": null,
"id": "73780054-afeb-4ce6-8255-51bf91f9f820",
"metadata": {
"tags": []
@@ -709,7 +709,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": null,
"id": "24af6d04-d29e-4adb-a289-4c34c2cc7ec8",
"metadata": {
"tags": []
@@ -780,7 +780,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": null,
"id": "e22ed1e1-b34d-43d1-ae8b-32b1fd5be53d",
"metadata": {
"tags": []
@@ -815,7 +815,7 @@
" 'tag': 'mlops'}]"
]
},
- "execution_count": 22,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -833,7 +833,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": null,
"id": "294548a5-9edf-4dea-ab8d-dc7464246810",
"metadata": {
"tags": []
@@ -864,7 +864,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": null,
"id": "29bca273-3ea8-4ce0-9fa9-fe19062b7c5b",
"metadata": {
"tags": []
@@ -917,7 +917,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": null,
"id": "3e59a3b9-69d9-4bb5-8b88-0569fcc72f0c",
"metadata": {
"tags": []
@@ -1001,7 +1001,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": null,
"id": "15ea136e",
"metadata": {},
"outputs": [],
@@ -1020,7 +1020,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": null,
"id": "ec0b498a-97c1-488c-a6b9-dc63a8a9df4d",
"metadata": {
"tags": []
@@ -1065,7 +1065,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": null,
"id": "4cc80311",
"metadata": {},
"outputs": [],
@@ -1080,7 +1080,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": null,
"id": "6771b1d2",
"metadata": {},
"outputs": [
diff --git a/notebooks/clear_cell_nums.py b/notebooks/clear_cell_nums.py
new file mode 100644
index 00000000..fc60b131
--- /dev/null
+++ b/notebooks/clear_cell_nums.py
@@ -0,0 +1,23 @@
+from pathlib import Path
+
+import nbformat
+
+
+def clear_execution_numbers(nb_path):
+ with open(nb_path, "r", encoding="utf-8") as f:
+ nb = nbformat.read(f, as_version=4)
+ for cell in nb["cells"]:
+ if cell["cell_type"] == "code":
+ cell["execution_count"] = None
+ for output in cell["outputs"]:
+ if "execution_count" in output:
+ output["execution_count"] = None
+ with open(nb_path, "w", encoding="utf-8") as f:
+ nbformat.write(nb, f)
+
+
+if __name__ == "__main__":
+ NOTEBOOK_DIR = Path(__file__).parent
+ notebook_fps = list(NOTEBOOK_DIR.glob("**/*.ipynb"))
+ for fp in notebook_fps:
+ clear_execution_numbers(fp)
diff --git a/notebooks/madewithml.ipynb b/notebooks/madewithml.ipynb
index cad9d158..f26dbcce 100644
--- a/notebooks/madewithml.ipynb
+++ b/notebooks/madewithml.ipynb
@@ -67,21 +67,34 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
- "import ray\n",
+ "import ray"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import sys; sys.path.append(\"..\")\n",
+ "import warnings; warnings.filterwarnings(\"ignore\")\n",
"from dotenv import load_dotenv; load_dotenv()\n",
- "import warnings; warnings.filterwarnings(\"ignore\")"
+ "%load_ext autoreload\n",
+ "%autoreload 2"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -90,16 +103,13 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-09-17 22:40:03,729\tINFO worker.py:1471 -- Connecting to existing Ray cluster at address: 10.0.35.174:6379...\n",
- "2023-09-17 22:40:03,738\tINFO worker.py:1646 -- Connected to Ray cluster. View the dashboard at \u001b[1m\u001b[32mhttps://session-klxewghyvu1191sq8t885l6ynr.i.anyscaleuserdata.com \u001b[39m\u001b[22m\n",
- "2023-09-17 22:40:03,753\tINFO packaging.py:346 -- Pushing file package 'gcs://_ray_pkg_33f9aafa2eafc632d810a161969b543f.zip' (5.14MiB) to Ray cluster...\n",
- "2023-09-17 22:40:03,766\tINFO packaging.py:359 -- Successfully pushed file package 'gcs://_ray_pkg_33f9aafa2eafc632d810a161969b543f.zip'.\n"
+ "2023-12-07 11:26:30,445\tINFO worker.py:1633 -- Started a local Ray instance. View the dashboard at \u001b[1m\u001b[32m127.0.0.1:8265 \u001b[39m\u001b[22m\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a78e1d2dc86847b1a21dded4c84a12c9",
+ "model_id": "afcfdccd644b41d0b7af7f86f68dbdf3",
"version_major": 2,
"version_minor": 0
},
@@ -123,15 +133,15 @@
"
\n",
" \n",
" Python version: | \n",
- " 3.10.8 | \n",
+ " 3.10.11 | \n",
"
\n",
" \n",
" Ray version: | \n",
- " 3.0.0.dev0 | \n",
+ " 2.7.0 | \n",
"
\n",
" \n",
" Dashboard: | \n",
- " http://session-klxewghyvu1191sq8t885l6ynr.i.anyscaleuserdata.com | \n",
+ " http://127.0.0.1:8265 | \n",
"
\n",
"\n",
"
\n",
@@ -140,10 +150,10 @@
"\n"
],
"text/plain": [
- "RayContext(dashboard_url='session-klxewghyvu1191sq8t885l6ynr.i.anyscaleuserdata.com', python_version='3.10.8', ray_version='3.0.0.dev0', ray_commit='6aa4ad9fbe0241a88e580e3c1a01e96ac3cce75a', protocol_version=None)"
+ "RayContext(dashboard_url='127.0.0.1:8265', python_version='3.10.11', ray_version='2.7.0', ray_commit='b4bba4717f5ba04ee25580fe8f88eed63ef0c5dc', protocol_version=None)"
]
},
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -157,7 +167,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -165,17 +175,14 @@
{
"data": {
"text/plain": [
- "{'GPU': 2.0,\n",
- " 'memory': 137438953472.0,\n",
+ "{'memory': 30507458560.0,\n",
+ " 'CPU': 12.0,\n",
" 'node:__internal_head__': 1.0,\n",
- " 'CPU': 32.0,\n",
- " 'accelerator_type:A10G': 2.0,\n",
- " 'object_store_memory': 38456435097.0,\n",
- " 'node:10.0.35.174': 1.0,\n",
- " 'node:10.0.34.101': 1.0}"
+ " 'node:127.0.0.1': 1.0,\n",
+ " 'object_store_memory': 2147483648.0}"
]
},
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -193,7 +200,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -218,7 +225,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -255,7 +262,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -266,7 +273,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -345,8 +352,8 @@
""
],
"text/plain": [
- " id created_on title \\\n",
- "0 6 2020-02-20 06:43:18 Comparison between YOLO and RCNN on real world... \n",
+ " id created_on title \n",
+ "0 6 2020-02-20 06:43:18 Comparison between YOLO and RCNN on real world... \\\n",
"1 7 2020-02-20 06:47:21 Show, Infer & Tell: Contextual Inference for C... \n",
"2 9 2020-02-24 16:24:45 Awesome Graph Classification \n",
"3 15 2020-02-28 23:55:26 Awesome Monte Carlo Tree Search \n",
@@ -360,7 +367,7 @@
"4 A PyTorch Implementation of \"Watch Your Step: ... other "
]
},
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -383,7 +390,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -394,7 +401,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -410,7 +417,7 @@
"Name: count, dtype: int64"
]
},
- "execution_count": 9,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -422,7 +429,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -435,7 +442,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -451,7 +458,7 @@
"Name: count, dtype: int64"
]
},
- "execution_count": 11,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -463,7 +470,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -479,7 +486,7 @@
"Name: count, dtype: int64"
]
},
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -509,7 +516,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {
"id": "tHdQmqTBNkSV",
"tags": []
@@ -525,7 +532,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {
"tags": []
},
@@ -539,7 +546,7 @@
" ('mlops', 63)]"
]
},
- "execution_count": 14,
+ "execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
@@ -552,7 +559,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -564,7 +571,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA10AAAEyCAYAAAABRrr5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVt0lEQVR4nO3deXhM1/8H8PdMNiSZLEQskUpoRpBNSEQiKtaEliiKii62VG21VChKW5RWEUGJiFpqDdoSEnsqzTdB7UvRRBCEIplE9pn7+8OT+RmTkEwyWd+v5+lT99xzz/3cmXsn85l7zrkiQRAEEBERERERkVaIKzsAIiIiIiKimoxJFxERERERkRYx6SIiIiIiItIiJl1ERERERERaxKSLiIiIiIhIi5h0ERERERERaRGTLiIiIiIiIi1i0kVERERERKRFTLqIiIiIiIi0iEkXEVENJ5VKS/1fQEBAZYddIj4+PpBKpbh3755KeUBAAKRSKeLj4yspMlXVJU4ACAoKglQqxZ49eyo7FCKiGkO3sgMgIiLt8vf3Vyt7/PgxTp06Vex6W1tbrcdVHfj4+CAlJQVHjx6FlZVVZYdTZnv27MHMmTPh7++P77//vrLDISKqNZh0ERHVcEV9uY6Pj1cmXTXxy/fixYuRnZ2NJk2aVHYoAICNGzciPz8flpaWlR3KG02ZMgWjR49Gw4YNKzsUIqIag0kXERHVOFUl2SpkbW1d2SGUWMOGDZlwERGVM47pIiIiFbdu3UJwcDCGDBmCzp07o23btnB3d8fHH3+MyMjI12575MgRDBs2DC4uLnB1dcXw4cNx4sQJ3Lt3D1KpFD4+PhrFM3HiRLi7u8PR0RF9+/ZFWFgY5HJ5sdsUN1YqLy8P69evx4ABA+Di4oK2bdvC09MT77//PpYsWYK0tDQAL7rhSaVSpKSkAAC6deumMuatsN34+HjlGLjs7GysWLECvr6+cHJyUjnW4sZ0vSwhIQGffvop3Nzc4OTkhIEDB2Lfvn2lOr5CK1euhFQqxcqVK1VimDlzJgBg7969xY7he9OYrgMHDuCjjz6Cm5sb2rZti65du2LmzJlISkoqsv7Lx/6///0Pn376KTp06ABHR0f4+/sXe4xERDUJ73QREZGK8PBw7N69G7a2trCzs4NEIsGDBw8QHx+PuLg4XLhwQfnl/WWhoaH48ccfAQBOTk5o1qwZkpOTMXbsWIwaNUqjWM6cOYPRo0cjKysLzZo1g6enJ549e4Zly5bhwoULpWpLoVBgzJgxiIuLg5GREdq3bw+JRIKnT58iOTkZYWFhePfdd2Fqagpra2v4+/sjKioKWVlZ6NWrF+rVq6dsq0GDBipt5+bmIiAgAP/++y/at2+PVq1aKRO4kjh8+DC2bt0KW1tbeHl54dGjRzh79ixmzJiB69evIygoqFTHWpRevXrh/Pnz+Pvvv2FtbQ1XV1flupKM4RMEAUFBQdi3bx90dXXRvn171K9fH1euXMGePXtw8OBBBAcHw9vbu8jtIyIisGbNGrRu3RqdO3dGSkoKzp8/jxkzZiAtLQ0ff/xxmY+RiKiqYtJFREQq+vXrh8DAQDRr1kylPDExEZ988gk2btyIPn36wNHRUbnu6tWrWLZsGXR0dLBixQr06NFDue7gwYOYMmVKqePIzc3FtGnTkJWVhY8++ggzZsyAjo4OAOD69ev4+OOP8ezZsxK3d/bsWcTFxaF169bYvHkzjIyMVNZfunQJjRo1AgC0b98e7du3R0JCArKysvDll1++diKNCxcuQCqVIjo6GhYWFqU+1s2bN2PKlCkYO3assiwhIQGjR49GeHg4PD090blz51K3+7IZM2Zgz549+Pvvv+Hq6lrqsXzbt2/Hvn37YGZmhvDwcNjb2wN4kYyFhIQgJCQEU6dORVRUFMzNzdW2Dw0NxZo1a9C1a1dlWeHEHiEhIRgyZAjq1KlTpmMkIqqq2L2QiIhUuLm5qSVcwIu7IePGjQMAHDp0SGXdli1bIJfL4evrq5JwASiyrCSioqLw4MEDNG7cGNOnT1cmXADQqlUrBAYGlqq9//77DwDg6uqqlnABgIODA8zMzEodZ6G5c+dqlHABQOvWrVUSLuDF+zBs2DAAL+4+VrYNGzYAAD7//HNlwgUAIpEI48ePh1QqhUwmw86dO4vcfvjw4SoJFwAMGDAAtra2yMjIwOXLl7UXPBFRJWPSRUREap4/f46DBw/ip59+wpw5cxAUFISgoCBER0cDgNr4ndOnTwMA3n333SLbe++990odQ0JCAoAXSZuenp7a+qKmun+dNm3aQEdHBxEREdi6dSsePXpU6piKU79+fbRv317j7fv161dkef/+/QG8uEv3ujFs2vbw4UPcuXMHQNGvu0gkwoABAwCg2HFmryZchVq0aAEASE1NLY9QiYiqJHYvJCIiFceOHcPMmTNfOyYpMzNTZfnhw4cAgKZNmxZZv7jy1ylss7hufSYmJjA2NkZGRkaJ2rO2tsbMmTOxZMkSfPPNN/jmm2/QtGlTODs745133kHv3r2hr69f6jgBzY7vZcUdY2F5Tk4O0tLSUL9+/TLtR1OFCZGpqWmRdwmB/5+hsbjkqbgZJQvby83NLWuYRERVFu90ERGRUmpqKr744gukpaVh1KhR+O2333D27Flcu3YN//zzD8LCwl67vUgkKlV5RQsICMDx48fx7bffon///hCLxThw4ACmT5+OPn36aHz3qyLGIgmCUOK6CoVCi5FopqqcA0RElYFJFxERKR07dgw5OTno0aMHpk+fjlatWsHIyAhi8Ys/F8nJyUVuV/jQ38Ip1l/1uqnSi1PYZnHbymSyEt/lelmDBg0wePBgLF68GEeOHEFkZCRcXFxw584dLF26tNTtlYfijrHw9TQwMICpqamyvLC75fPnz4vc7v79++UaX+F7kZaWpnaXs9Ddu3dV6hIR0f9j0kVERErp6ekAiu4KJggC/vjjjyK369ChAwAUu37//v2ljqWwzUOHDiE/P19tfXk936lFixbKKe2vXbumsq4wudH2eKrff/+9yPLCY3R1dYWu7v+PCChMbP7991+1bbKzs4sdV1V4PAUFBaWKr1GjRsrug0U9v0sQBOzduxcA4O7uXqq2iYhqAyZdRESkVDipQVRUlEpXO7lcjhUrVuDcuXNFbvfhhx9CLBYjMjISR44cUVkXHR2tnICjNHr37g1LS0vcv38fP/30k0qXuRs3bmDNmjWlai8uLg4nT55US+AEQcCJEycAqCebhcnNzZs3Sx1/aVy5cgWhoaEqZWfOnMGvv/4KAGrPsPLw8AAA/PrrrypjqLKysjBnzhw8ePCgyP0UTolfVLL2Jp9++ikAYPXq1bh+/bqyXBAErF69GteuXYNEIsHgwYNL3TYRUU3HiTSIiEipa9euaNOmDa5cuYJevXrBzc0NdevWxcWLF/Ho0SOMHj1aLTkAgLZt22Ly5Mn46aef8Pnnn8PZ2RlWVla4c+cOLl68iE8//RQbNmwochbC4tSpUwc//vgjxowZgw0bNuDIkSNwcHBAWloaEhIS0LVrV1y5cqXYLo2v+ueff7Bo0SIYGRmhdevWaNiwIXJzc3H16lWkpKTA2NgYkyZNUtmmV69eiI+Px/Tp0+Hl5QWJRAIAGDlyZIkeKFxSAQEB+Omnn/Dbb79BKpXi0aNHOHPmDBQKBUaMGIEuXbqo1Pf19cUvv/yCy5cvo0+fPnB1dYVCocDly5ehp6eH999/HxEREWr7cXJyQsOGDXH16lX4+/vDzs4Ourq6sLGxeeMDrIcMGYJz587ht99+w/vvv48OHTooH46clJSkfL+KekYXEVFtxztdRESkpKuri82bNyMwMBCWlpaIi4tDQkIC7O3tsX379tc+oHfs2LEICQlBu3btcOPGDRw/fhx6enpYtWoVunXrBgClfg6Wm5sbdu7ciZ49e0Imk+Hw4cN4+PAhJk6ciGXLlpWqLR8fH0yYMAEODg64d+8eDh8+jISEBBgZGWHMmDHYv3+/yvOnAGDo0KGYOnUqmjZtipMnT2L37t3YvXs3Hj9+XKp9v0mPHj2wYcMGNGjQACdPnsTFixfRunVrfP/99/jqq6/U6uvp6SE8PBzDhw+HoaEhYmNj8c8//6BHjx7Yu3cvGjduXOR+9PX1ERYWBh8fHzx8+BC///47du/ejZMnT74xRpFIhCVLlmDp0qVo164drly5gqioKOTk5GDAgAHYu3evWnJIREQviITSTIdERESkgZCQEKxcuRIBAQGYPXt2ZYdDRERUoXini4iIysXt27eVE3G87OjRo1i3bh1EIpHyYb9ERES1Ccd0ERFRufjjjz+wdu1a2Nvbo3HjxsjPz0dSUhKSkpIAABMmTEDbtm0rOUoiIqKKx6SLiIjKRefOnXH79m1cuHAB//77L/Ly8mBqaoquXbti2LBh8Pb2ruwQiYiIKgXHdBEREREREWkRx3QRERERERFpEZMuIiIiIiIiLWLSRUREREREpEWcSEMDgiBAoeBQOCIiIiKi2kwsFkEkEr2xHpMuDSgUAp4+fV7ZYRARERERUSUyNzeEjs6bky52LyQiIiIiItIiJl1ERERERERaxKSLiIiIiIhIi5h0ERERERERaRGTLiIiIiIiIi1i0kVERERERKRFTLqIiIiIiIi0iEkXERERERGRFvHhyJVMLBZBLH7zA9WIykqhEKBQCJUdBhEREVGtw6SrEonFIpia1oOODm84kvbJ5QqkpWUx8SIiIiKqYFUu6Tp58iRCQ0Nx69YtZGZmwtLSEt27d8f48eNhbGysrHfs2DEsX74cSUlJaNKkCcaMGYP3339fpa28vDwsW7YMv//+O54/fw4XFxfMmTMHtra2FX1YRRKLRdDREWPVtlikPEqv7HCoBmva0ASfD/WEWCxi0kVERERUwapc0pWWlgZHR0cEBATA1NQUN2/exMqVK3Hz5k1s2LABAHDmzBmMHz8eAwcOxKxZs/C///0PX331FQwNDdG7d29lW9999x0iIyMRFBQES0tL/Pzzz/j4449x4MABlQSusqU8SsftlGeVHQYREREREWlBlUu6+vXrp7Ls7u4OfX19zJkzB6mpqbC0tMSaNWvg6OiIb775BgDQsWNH3L17F8HBwcqk6+HDh9i9eze+/vprDBw4EADg4OCArl27Yvv27Rg9enTFHhgREREREdVK1WIwkampKQAgPz8feXl5iI+PV7mjBQB+fn74999/ce/ePQDAqVOnoFAoVOqZmprC09MTMTExFRY7ERERERHVblU26ZLL5cjNzcWVK1ewatUq+Pj4wMrKCnfu3EF+fr7auKwWLVoAABITE5X/r1+/PkxMTNTqFdYhIiIiIiLStirXvbBQ165dkZqaCgDo3Lkzli5dCgBIT38x4YREIlGpX7hcuF4mkxU5bksikSjrlIWubtnzVc5aSBWN5xwRERFRxauySde6deuQnZ2NW7duYc2aNQgMDER4eHhlhwXgxayDZmaGlR0GUalJJHUrOwQiIiKiWqfKJl2tWrUCALi4uMDBwQH9+vXD4cOH0bJlSwBARkaGSn2ZTAYAyu6EEokEmZmZau3KZDK1LoelpVAIkMmyytQG8OKuA78EU0WSybIhlysqOwwiIiKiGkEiqVuinkRVNul6mVQqhZ6eHu7cuQMfHx/o6ekhMTERnTt3VtYpHKdVONbL1tYW//33H9LT01WSrMTExHJ5TldBAb+4UvUjlyt47hIRERFVsGoxwOPChQvIz8+HlZUV9PX14e7ujqioKJU6kZGRaNGiBaysrAAAXl5eEIvFiI6OVtZJT0/HqVOn4O3tXaHxExERERFR7VXl7nSNHz8ebdu2hVQqRZ06dXD9+nWEhYVBKpWie/fuAIDPPvsMI0aMwLx58+Dr64v4+Hjs378fy5YtU7bTqFEjDBw4EEuWLIFYLIalpSXWrl0LY2NjDBkypLIOj4iIiIiIapkql3Q5OjoiMjIS69atgyAIaNq0KQYNGoSRI0dCX18fANC+fXusXLkSy5cvx+7du9GkSRN899138PX1VWlr9uzZMDQ0xNKlS/H8+XO0a9cO4eHhRc5qSEREREREpA0iQRCEyg6iupHLFXj69HmZ29HVFcPMzBCzVkTidsqzcoiMqGjNm5ph4SQ/PHv2nGO6iIiIiMqJublhiSbSqBZjuoiIiIiIiKorJl1ERERERERaxKSLiIiIiIhIi6rcRBpEVPuIxSKIxaLKDoNqAYVCgELBocxERFSxmHQRUaUSi0UwM6sLsVinskOhWkChkOPZs2wmXkREVKGYdBFRpXpxl0sHSftDkf3kQWWHQzVY3fqNYdN3NMRiEZMuIiKqUEy6iKhKyH7yANmpdyo7DCIiIqJyx4k0iIiIiIiItIhJFxERERERkRYx6SIiIiIiItIiJl1ERERERERaxKSLiIiIiIhIi5h0ERERERERaRGTLiIiIiIiIi1i0kVERERERKRFTLqIiIiIiIi0iEkXERERERGRFjHpIiIiIiIi0iImXURERERERFrEpIuIiIiIiEiLmHQRERERERFpEZMuIiIiIiIiLWLSRUREREREpEW6lR3Aqw4ePIjff/8dV65cgUwmw1tvvYWAgAC8//77EIlEAICAgAAkJCSobRsZGYkWLVoolzMyMrBo0SIcOXIE+fn56Ny5M2bPno2GDRtW2PEQEREREVHtVuWSro0bN6Jp06YICgqCmZkZ/vrrL8yZMwcPHz7E+PHjlfXatWuHGTNmqGxrZWWlsjx58mTcunUL8+bNg4GBAZYvX47Ro0cjIiICurpV7tCJiIiIiKgGqnKZx5o1a2Bubq5c9vDwQFpaGsLDwzFu3DiIxS96REokEjg7Oxfbzrlz53Dq1CmEhYXBy8sLAGBjYwM/Pz9ER0fDz89Pq8dBREREREQEVMExXS8nXIXs7e2RmZmJrKysErcTExMDiUQCT09PZZmtrS3s7e0RExNTLrESERERERG9SZW701WUs2fPwtLSEkZGRsqyhIQEODs7Qy6Xw8nJCZMmTUKHDh2U6xMTE2FjY6McB1bI1tYWiYmJZY5JV7fs+aqOTpXLeamGq4rnXFWMiWo2nnNERFTRqnzSdebMGURGRqqM3+rQoQP69euH5s2b49GjRwgLC8Mnn3yCzZs3w8XFBQAgk8lgbGys1p6JiQkuX75cppjEYhHMzAzL1AZRZZBI6lZ2CESVjtcBERFVtHJPuvLy8iASiaCnp1fmth4+fIgvvvgC7u7uGDFihLJ84sSJKvXeeecd9O3bF6tXr0ZoaGiZ9/smCoUAmazkXR2Lo6Mj5h9/qlAyWTbkckVlh6GC1wFVtKp4HRARUfUkkdQtUQ8KjZKu06dP46+//sInn3wCiUQCAHj27BmmT5+OuLg46OrqIiAgANOmTdOkeQAv7lSNHj0apqamWLlypXICjaLUq1cPXbp0QVRUlLJMIpHg4cOHanXT09NhYmKicVyFCgr4B5uqH7lcwXOXaj1eB0REVNE06tgeFhaG/fv3KxMuAFi8eDFOnToFKysrGBsbIywsDJGRkRoFlZOTg7FjxyIjIwPr168vspvgm9ja2iIpKQmCIKiUJyUlwdbWVqO4iIiIiIiISkujpOvatWtwdXVVLufm5uLgwYPw9PREVFQUDh06hMaNG2Pbtm2lbrugoACTJ09GYmIi1q9fD0tLyzduk5WVhRMnTsDBwUFZ5u3tjfT0dMTFxSnLkpKScPXqVXh7e5c6LiIiIiIiIk1o1L0wLS1NJRk6d+4ccnNz8f777wMAjIyM0LVrV5XufiU1f/58HD9+HEFBQcjMzMT58+eV61q3bo2LFy9i/fr16NGjB5o2bYpHjx4hPDwcjx8/xooVK5R1XVxc4OXlhVmzZmHGjBkwMDDAsmXLIJVK0bNnT00Om4iIiIiIqNQ0Srrq1KmD58+fK5fj4+MhEolUpmyvV68eZDJZqduOjY0FAHz//fdq644ePQoLCwvk5+dj2bJlSEtLQ926deHi4oL58+fD0dFRpf7y5cuxaNEizJ07FwUFBfDy8sLs2bOhq1vlJ20kIiIiIqIaQqPsw9raGn/++Sfy8vIAAJGRkWjZsiUsLCyUde7fv4/69euXuu1jx469sU5YWFiJ2jI2NsbChQuxcOHCUsdBRERERERUHjQa0zV48GAkJyejR48e8PPzw507dzBgwACVOleuXEGLFi3KJUgiIiIiIqLqSqOka+DAgRg5ciRycnKQkZGBoUOH4qOPPlKuP3fuHG7fvg0PD49yC5SIiIiIiKg60qh7oUgkwvTp0zF9+vQi17dp0wanT59G3bp84CkREREREdVuGt3p2rdvH65fv17sen19fTx48AD79+/XODAiIiIiIqKaQKOkKygoCEeOHHltnaNHj2LmzJkaBUVERERERFRTaJR0lYRcLodYrLXmiYiIiIiIqgWtZUXXrl2DiYmJtponIiIiIiKqFko8kcaIESNUlvfu3YuEhAS1egqFAg8fPkRKSgp8fX3LHiEREREREVE1VuKk6+UESyQSISUlBSkpKWr1xGIxTExM0Lt3b8yaNat8oiQiIiIiIqqmSpx0vTxbYatWrTB+/HiMHz9eK0ERERERERHVFBo9p2vTpk1o2rRpecdCRERERERU42g0kYarqytMTEygUCiKXC+Xy5GZmQm5XF6m4IiIiIiIiKo7jZKukJAQeHh4IC0trcj16enp6NSpE9asWVOW2IiIiIiIiKo9jZKuEydOwMPDA+bm5kWuNzc3R6dOnXDs2LEyBUdERERERFTdaZR03b17F7a2tq+tY2Njg3v37mkUFBERERERUU2hUdJVUFAAkUj0xnq5ubmaNE9ERERERFRjaJR0WVtbIz4+/rV14uPjYWVlpVFQRERERERENYVGSVfPnj1x7do1rFixQm2GQrlcjuXLl+PatWvo3bt3uQRJRERERERUXWn0nK5PPvkEBw4cwM8//4zIyEi4u7ujYcOGePToEeLj43Hnzh20aNECn376aXnHS0REREREVK1olHQZGhpi69atmDdvHg4fPozk5GTlOrFYjF69euHrr7+GoaFhuQVKRERERERUHWmUdAEvpoUPDg7Gf//9h8uXLyMjIwMSiQRt27ZF/fr1yzNGIiIiIiKiakvjpKtQgwYN8M4775RDKERERERERDWPRhNpFMrLy8PJkycRHh6OVatWKctzc3Px5MkTKBSKUrd58OBBfPbZZ/D29oazszP69euH3bt3QxAElXq7du1Cr1694ODggPfeew/Hjx9XaysjIwOzZs2Cm5sbXFxcMHHiRDx69Kj0B0pERERERKQhjZOuo0ePomvXrggMDMTixYsREhKiXPfPP//Ay8sLBw4cKHW7GzduRN26dREUFIQ1a9bA29sbc+bMUUnqDhw4gDlz5sDX1xehoaFwdnbG+PHjcf78eZW2Jk+ejNjYWMybNw8//vgjkpKSMHr0aBQUFGh62ERERERERKWiUffCs2fPYtKkSbCwsMBXX32F8+fPqyRYjo6OsLa2RnR0NN59991Stb1mzRqYm5srlz08PJCWlobw8HCMGzcOYrEYwcHB6NOnDyZPngwA6NixI27cuIFVq1YhNDQUAHDu3DmcOnUKYWFh8PLyAgDY2NjAz88P0dHR8PPz0+TQiYiIiIiISkWjO12rV6+GsbExIiIiMHz4cDRv3lytTtu2bXH9+vVSt/1ywlXI3t4emZmZyMrKwt27d3H79m34+vqq1PHz80NcXBzy8vIAADExMZBIJPD09FTWsbW1hb29PWJiYkodFxERERERkSY0SrouXryIbt26FZkgFWrcuDH+++8/jQN72dmzZ2FpaQkjIyMkJiYCeHHX6mUtWrRAfn4+7t69CwBITEyEjY0NRCKRSj1bW1tlG0RERERERNqmUffCvLw8GBkZvbaOTCZTS3g0cebMGURGRmLGjBkAgPT0dACARCJRqVe4XLheJpPB2NhYrT0TExNcvny5zHHp6pZpDhIAgI5O2dsgKo2qeM5VxZioZuM5R0REFU2jpKtZs2a4dOnSa+ucP38etra2GgVV6OHDh/jiiy/g7u6OESNGlKmt8iQWi2Bmxgc/U/UjkdSt7BCIKh2vAyIiqmgaJV09e/bEmjVrEBERgffff19tfVhYGG7evInp06drHJhMJsPo0aNhamqKlStXQix+8cukiYkJgBfTwVtYWKjUf3m9RCLBw4cP1dpNT09X1tGUQiFAJssqUxvAi19b+cefKpJMlg25vPSPctAmXgdU0aridUBERNWTRFK3RD0oNEq6Ro4ciejoaMyePRv79+9XTl6xZMkSnD9/HufOnYO9vT2GDx+uSfPIycnB2LFjkZGRgR07dqh0Eyy8e5aYmKhyJy0xMRF6enpo1qyZsl5cXBwEQVDp5piUlAQ7OzuN4npZQQH/YFP1I5creO5SrcfrgIiIKppGHdsNDQ2xdetW+Pn5ISEhAWfPnoUgCNiwYQPOnTsHX19fhIeHQ19fv9RtFxQUYPLkyUhMTMT69ethaWmpsr5Zs2Zo3rw5Dh06pFIeGRkJDw8P5T69vb2Rnp6OuLg4ZZ2kpCRcvXoV3t7eGhw1ERERERFR6Wl0pwt40Y1v6dKlmD17Ni5duoT09HQYGRnBwcEBDRo00Dig+fPn4/jx4wgKCkJmZqbKA49bt24NfX19TJgwAdOmTYO1tTXc3d0RGRmJixcvYsuWLcq6Li4u8PLywqxZszBjxgwYGBhg2bJlkEql6Nmzp8bxERERERERlYbGSVchMzOzcr1zFBsbCwD4/vvv1dYdPXoUVlZW6Nu3L7KzsxEaGop169bBxsYGISEhcHFxUam/fPlyLFq0CHPnzkVBQQG8vLwwe/Zs6OqW+bCJiIiIiIhKpMplH8eOHStRvUGDBmHQoEGvrWNsbIyFCxdi4cKF5REaERERERFRqZUo6Zo5cyZEIhGmTJmCBg0aYObMmSXegb6+Pho1aoRu3bqVywQWRERERERE1UmJkq69e/dCJBJh9OjRaNCgAfbu3VvqHYWEhGDlypXw8fEp9bZERERERETVVYmSrqNHjwKAcibBwuWSyM3NRXJyMr755hsmXUREREREVOuUKOlq2rTpa5ffxNbWFmfPnlWZXZCIiIiIiKg2qLCJNAYOHAhnZ+eK2h0REREREVGVUKak6+zZs9i7dy+uXbuGzMxMGBkZoXXr1ujXrx/at2+vUrd58+Zo3rx5WXZHRERERERU7WicdC1cuBCbN2+GIAgAAJFIBEEQcOXKFezevRsjRowo1SyHRERERERENZFGSdfevXuxadMmNG/eHOPHj4e7uzsaNGiAJ0+eID4+HiEhIdi0aRPs7e3Rv3//cg6ZiIiIiIio+hBrstG2bdvQqFEj7Nq1C3379oWFhQVEIhEaNGiAPn36YOfOnbC0tMSvv/5a3vESERERERFVKxolXTdv3kTPnj1hbGxc5HpjY2P07NkTN2/eLFNwRERERERE1Z1GSVdJiEQibTVNRERERERUbWiUdL399tuIjo7G8+fPi1yfmZmJ6OhovP3222UKjoiIiIiIqLrTKOn64IMP8PDhQwwZMgRRUVF4+vQpAODp06c4dOgQhg4diocPH2Lo0KHlGiwREREREVF1o9Hshe+//z6uXbuGLVu2YPLkyQAAsVgMhUIBABAEAcOHD4e/v3+5BUpERERERFQdafycrtmzZ6N3797Ys2cPrl+/rnw4sr29Pfz9/dUejkxERERERFQbaZR0nT59GkZGRmjfvj2TKyIiIiIiotfQaEzXiBEjsGPHjvKOhYiIiIiIqMbRKOmqX78+DAwMyjsWIiIiIiKiGkejpKtTp05ISEiAIAjlHQ8REREREVGNolHSNXXqVKSlpWHOnDlIS0sr55CIiIiIiIhqDo0m0pg+fTqMjY0RERGB33//HVZWVqhfvz5EIpFKPZFIhF9++aVcAiUiIiIiIqqONEq6EhISlP/Oy8tDYmIiEhMT1eq9moQRERERERHVNholXdevXy/vOIiIiIiIiGokjR+OrC3JyckICwvDhQsXcPPmTdja2mL//v0qdQICAlTuthWKjIxEixYtlMsZGRlYtGgRjhw5gvz8fHTu3BmzZ89Gw4YNtX4cREREREREQDklXXfv3kVGRgaMjY3RrFmzMrV18+ZNnDx5Ek5OTlAoFMXOkNiuXTvMmDFDpczKykplefLkybh16xbmzZsHAwMDLF++HKNHj0ZERAR0datcvklERERERDWQxplHRkYGVqxYgd9++w2ZmZnKciMjI/Tv3x8TJ06EsbFxqdv18fFB9+7dAQBBQUG4fPlykfUkEgmcnZ2LbefcuXM4deoUwsLC4OXlBQCwsbGBn58foqOj4efnV+rYiIiIiIiISkujKeOfPHmCgQMHYsuWLRCJROjQoQN8fX3RoUMHiEQibN68GQMHDsSTJ09KH5BYo5DUxMTEQCKRwNPTU1lma2sLe3t7xMTElMs+iIiIiIiI3kSjO11Lly5FcnIyxowZg8DAQNSrV0+5LisrC2vWrEFoaCh++uknLFiwoNyCfVlCQgKcnZ0hl8vh5OSESZMmoUOHDsr1iYmJsLGxUZtB0dbWtsiZFktLV7fsyaGOTvkkmEQlVRXPuaoYE9VsPOeIiKiiaZR0HT9+HB07dsSUKVPU1tWrVw9Tp07FhQsXcOzYsTIHWJQOHTqgX79+aN68OR49eoSwsDB88skn2Lx5M1xcXAAAMpmsyO6NJiYmxXZZLCmxWAQzM8MytUFUGSSSupUdAlGl43VAREQVTaOkKzs7G05OTq+t4+LigkuXLmkU1JtMnDhRZfmdd95B3759sXr1aoSGhmplny9TKATIZFllbkdHR8w//lShZLJsyOWKyg5DBa8DqmhV8TogIqLqSSKpW6IeFBolXW+//TZSUlJeW+fevXt4++23NWm+1OrVq4cuXbogKipKWSaRSPDw4UO1uunp6TAxMSnzPgsK+Aebqh+5XMFzl2o9XgdERFTRNOrYPnbsWERFReGvv/4qcv2pU6cQFRWFwMDAMgVXFra2tkhKSlKbcj4pKQm2traVFBUREREREdU2Gt3pyszMhKenJ0aOHIlOnTrB1dUVDRo0wH///YezZ8/ir7/+wjvvvAOZTIZ9+/apbNu/f/9yCFtVVlYWTpw4AQcHB2WZt7c3Vq9ejbi4OHTq1AnAi4Tr6tWrGDVqVLnHQEREREREVBSNkq6goCCIRCIIgoDY2FjExsaq1Tl+/DhOnDihXBYEASKR6I1JV3Z2Nk6ePAkASElJQWZmJg4dOgQAcHNzQ2JiItavX48ePXqgadOmePToEcLDw/H48WOsWLFC2Y6Liwu8vLwwa9YszJgxAwYGBli2bBmkUil69uypyWETERERERGVmkZJ16JFi8o7DqUnT55g0qRJKmWFy5s2bUKjRo2Qn5+PZcuWIS0tDXXr1oWLiwvmz58PR0dHle2WL1+ORYsWYe7cuSgoKICXlxdmz54NXV2NnwlNRERERERUKhplH/7+/uUdh5KVlRX++eef19YJCwsrUVvGxsZYuHAhFi5cWB6hERERERERlRqfEElERERERKRFTLqIiIiIiIi0iEkXERERERGRFjHpIiIiIiIi0iImXURERERERFrEpIuIiIiIiEiLSpR0ubm5ITQ0VLkcEhKC06dPay0oIiIiIiKimqJEz+nKyMhAbm6ucjkkJAQA0KFDB+1ERUREREREVEOU6E5X/fr1kZqaqu1YiIiIiIiIapwS3elycnLCb7/9BrFYDAsLCwBAQkKC8o5XcUQiET7//POyR0lERERERFRNlSjp+vLLL3H79m3s2LEDwItkKiEhAQkJCa/djkkXERERERHVdiVKut566y388ccfuHfvHlJTUxEQEAB/f3/4+/trOz4iIiIiIqJqrURJFwCIxWJYW1vD2toaTZo0gb29Pdzc3LQZGxERERERUbVX4qTrZceOHSvvOIiIiIiIiGokjZKul509exbXr19HZmYmjIyM0KpVK7i6upZHbERERERERNWexknX33//jZkzZ+LOnTsAAEEQIBKJALwYA7Zo0SK4uLiUT5RERERERETVlEZJ182bNzFy5EhkZ2fD09MT7u7usLCwwOPHjxEfH4/Y2FiMHDkSO3fuRMuWLcs7ZiIiIiIiompDo6Rr1apVyM/Px7p16+Dt7a2ybsyYMYiJicG4ceOwatUqLFu2rFwCJSIiIiIiqo7EmmyUkJCAXr16qSVchby9vdGrVy/Ex8eXKTgiIiIiIqLqTqOkKyMjA1ZWVq+tY2VlhYyMDI2CIiIiIiIiqik0SroaNmyI8+fPv7bOhQsX0LBhQ02aJyIiIiIiqjE0Srp8fHyQkJCA5cuXIzc3V2Vdbm4ugoODER8fj27dupVLkERERERERNWVRhNpjBs3DidOnMDatWuxY8cOODo6on79+njy5AkuXbqEp0+folmzZhg3blyp205OTkZYWBguXLiAmzdvwtbWFvv371ert2vXLqxfvx7379+HjY0NvvjiC3Tt2lWlTkZGBhYtWoQjR44gPz8fnTt3xuzZs3kHjoiIiIiIKoxGSZeZmRl27NiBH374AZGRkTh58qRynYGBAQYMGIBp06bB1NS01G3fvHkTJ0+ehJOTExQKBQRBUKtz4MABzJkzB4GBgejYsSMiIyMxfvx4bN26Fc7Ozsp6kydPxq1btzBv3jwYGBhg+fLlGD16NCIiIqCrW+bnQhMREZUbsVgEsVhU2WFQLaBQCFAo1L9fEZH2aJx5mJubY9GiRfjmm2+QmJiIzMxMGBkZwdbWFnp6ehoH5OPjg+7duwMAgoKCcPnyZbU6wcHB6NOnDyZPngwA6NixI27cuIFVq1YhNDQUAHDu3DmcOnUKYWFh8PLyAgDY2NjAz88P0dHR8PPz0zhGIiKi8iQWi2BqVhc6Yp3KDoVqAblCjrRn2Uy8iCpQmW/36OnpQSqVlkcsAACx+PXDzO7evYvbt29j+vTpKuV+fn5YsmQJ8vLyoK+vj5iYGEgkEnh6eirr2Nrawt7eHjExMUy6iIioyhCLRdAR62DtyU24n55a2eFQDdbExBJju4yAWCxi0kVUgapdH7vExEQAL+5avaxFixbIz8/H3bt30aJFCyQmJsLGxgYikWpXDVtbW2UbREREVcn99FQkP7lX2WEQEVE5q3ZJV3p6OgBAIpGolBcuF66XyWQwNjZW297ExKTILoulpaur0cSPKnR0yt4GUWlUxXOuKsZENVtVPOeqYkxUs/GcI6pY1S7pqgrEYhHMzAwrOwyiUpNI6lZ2CESVjtcBEa8DoopW7ZIuExMTAC+mg7ewsFCWy2QylfUSiQQPHz5U2z49PV1ZR1MKhQCZLKtMbQAvfmXihx5VJJksG3K5orLDUMHrgCoarwOiqnkdEFVHEkndEt05rnZJl62tLYAXY7sK/124rKenh2bNminrxcXFQRAElXFdSUlJsLOzK3McBQX8oKLqRy5X8NylWo/XARGvA6KKVu069DZr1gzNmzfHoUOHVMojIyPh4eEBfX19AIC3tzfS09MRFxenrJOUlISrV6/C29u7QmMmIiIiIqLaq8rd6crOzlY+bDklJQWZmZnKBMvNzQ3m5uaYMGECpk2bBmtra7i7uyMyMhIXL17Eli1blO24uLjAy8sLs2bNwowZM2BgYIBly5ZBKpWiZ8+elXJsRERERERU+2iUdN2/fx8BAQGYN28eOnfuXK4BPXnyBJMmTVIpK1zetGkT3N3d0bdvX2RnZyM0NBTr1q2DjY0NQkJC4OLiorLd8uXLsWjRIsydOxcFBQXw8vLC7Nmzoatb5XJNIiIiIiKqoTTKPgoKCpCSkoLs7Gxl2d69e7F3715s2rSpTAFZWVnhn3/+eWO9QYMGYdCgQa+tY2xsjIULF2LhwoVliomIiIiIiEhTJU66Ro4ciY4dO8Ld3R1GRkZq61NSUnD69OlyDY6IiIiIiKi6K3HSJZPJsHz5cigUCujr60MkEuHkyZNo1KgR2rRpo80YiYiIiIiIqq0SJ127du1CZmYm4uPjcfz4cezevRsRERHYs2cP6tSpA4lEAgA4d+4cHBwcOG6KiIiIiIgIpRzTZWRkhG7duqFly5bYvXs3vv32W9SvXx8JCQk4cuQIBEHAsGHDUKdOHTg5OcHNzQ3jxo3TVuxERERERERVXomf07V582bcvHkTAJQPGzYxMYGPjw+CgoLQv39/iEQi/Pzzzxg2bBhycnKwZs0a7URNRERERERUTZT4TteCBQsgEolgZmYGe3t7iEQiPH36VK1ely5d0KVLFwBATk5O+UVKRERERERUDZU46Tp58iTi4uJw+vRpxMfHQxAEzJ8/HytXrkT79u2Rlpamtk2dOnXKM1YiIiIiIqJqp8RJl6WlJfr374/+/fsjOTkZvXr1wuDBgyGXy5GQkIA7d+5AJBKhU6dOcHV1Rfv27dGhQwe0bt1am/ETERERERFVaRpNMVg4psvT0xM9e/YEAPz0008IDQ1Fz549cfr0aRw+fBgikQjXrl0rv2iJiIiIiIiqmXKb111fXx8AMG/ePADA06dP+bBkIiIiIiKq9Uo8e+HL6tevj0WLFsHBwaHYOubm5ujVq5fGgREREREREdUEGt3pMjQ0hL+/v0qZm5tbuQRERERERERUk5Rb90I3NzcmXkRERERERK/QqHshERERERERlQyTLiIiIiIiIi1i0kVERERERKRFTLqIiIiIiIi0iEkXERERERGRFpXb7IVERERERJoSi0UQi0WVHQbVAgqFAIVCqNB9MukiIiIiokolFotgZloXYh2dyg6FagGFXI5nadkVmngx6SIiIiKiSiUWiyDW0cH5NWuRef9BZYdDNZhRk8Zw/mwsxGIRky4iIiIiqn0y7z+ALDm5ssMgKnecSIOIiIiIiEiLqmXStWfPHkilUrX/fvzxR5V6u3btQq9eveDg4ID33nsPx48fr6SIiYiIiIiotqrW3QvXr18PY2Nj5bKlpaXy3wcOHMCcOXMQGBiIjh07IjIyEuPHj8fWrVvh7OxcCdESEREREVFtVK2TrjZt2sDc3LzIdcHBwejTpw8mT54MAOjYsSNu3LiBVatWITQ0tAKjJCIiIiKi2qxadi98k7t37+L27dvw9fVVKffz80NcXBzy8vIqKTIiIiIiIqptqvWdrr59++LZs2do0qQJBg8ejFGjRkFHRweJiYkAABsbG5X6LVq0QH5+Pu7evYsWLVqUad+6umXPV3V0amTOS1VYVTznqmJMVLNVxXOuKsZENVtVO+eqWjxU81X0OVctky4LCwtMmDABTk5OEIlEOHbsGJYvX47U1FTMnTsX6enpAACJRKKyXeFy4XpNicUimJkZlqkNosogkdSt7BCIKh2vAyJeB0QVfQ1Uy6Src+fO6Ny5s3LZy8sLBgYG+OWXXxAYGKj1/SsUAmSyrDK3o6Mj5oceVSiZLBtyuaKyw1DB64AqGq8Doqp3HfAaoIpWXteARFK3RHfNqmXSVRRfX19s2LAB165dg4mJCQAgIyMDFhYWyjoymQwAlOvLoqCg6nxQEZWUXK7guUu1Hq8DIl4HRBV9DdTIDrS2trYAoBzbVSgxMRF6enpo1qxZZYRFRERERES1UI1JuiIjI6Gjo4PWrVujWbNmaN68OQ4dOqRWx8PDA/r6+pUUJRERERER1TbVsnvhyJEj4e7uDqlUCgA4evQodu7ciREjRii7E06YMAHTpk2DtbU13N3dERkZiYsXL2LLli2VGToREREREdUy1TLpsrGxQUREBB4+fAiFQoHmzZtj1qxZCAgIUNbp27cvsrOzERoainXr1sHGxgYhISFwcXGpxMiJiIiIiKi2qZZJ1+zZs0tUb9CgQRg0aJCWoyEiIiIiIipejRnTRUREREREVBUx6SIiIiIiItIiJl1ERERERERaxKSLiIiIiIhIi5h0ERERERERaRGTLiIiIiIiIi1i0kVERERERKRFTLqIiIiIiIi0iEkXERERERGRFjHpIiIiIiIi0iImXURERERERFrEpIuIiIiIiEiLmHQRERERERFpEZMuIiIiIiIiLWLSRUREREREpEVMuoiIiIiIiLSISRcREREREZEWMekiIiIiIiLSIiZdREREREREWsSki4iIiIiISIuYdBEREREREWkRky4iIiIiIiItqvFJ17///otPPvkEzs7O8PT0xJIlS5CXl1fZYRERERERUS2hW9kBaFN6ejo++ugjNG/eHCtXrkRqaiq+//575OTkYO7cuZUdHhERERER1QI1Ounavn07nj9/jpCQEJiamgIA5HI55s+fj7Fjx8LS0rJyAyQiIiIiohqvRncvjImJgYeHhzLhAgBfX18oFArExsZWXmBERERERFRr1OikKzExEba2tiplEokEFhYWSExMrKSoiIiIiIioNqnR3QtlMhkkEolauYmJCdLT0zVuVywWwdzcsCyhAQBEohf/nzHSB3K5osztERVHR+fF7ysmJnUhCJUczCsKr4O3B06GoJBXbjBUo4nEOgCq9nUwtUcgCngdkBbpVtHroPAa6DB9CoQCXgOkPSLd8r0GxGJRierV6KRLW0QiEXR0SvYCl4SJUZ1ya4vodcTiqntzW89Q/QcSIm2oyteBpK5xZYdAtURVvQ4MivixnEgbKvoaqJpXXDmRSCTIyMhQK09PT4eJiUklRERERERERLVNjU66bG1t1cZuZWRk4PHjx2pjvYiIiIiIiLShRidd3t7e+OuvvyCTyZRlhw4dglgshqenZyVGRkREREREtYVIEKrSMMrylZ6ejj59+sDGxgZjx45VPhz53Xff5cORiYiIiIioQtTopAsA/v33X3z77bc4d+4cDA0N0a9fP3zxxRfQ19ev7NCIiIiIiKgWqPFJFxERERERUWWq0WO6iIiIiIiIKhuTLiIiIiIiIi1i0kVERERERKRFTLqIiIiIiIi0iEkXERERERGRFjHpIiIiIiIi0iImXURERERERFrEpKuaCggIQEBAwBvrxcfHQyqVIj4+vgKiopqM5xIBgFQqxcqVK0u1TVBQEHx8fLQUEdUmPj4+GDt2bGWHQVRh7t27B6lUij179lR2KFRGTLpKaevWrTzxiUjrfv75Zxw5cqSywyCqcLdu3cLKlStx7969yg6FiKjc6FZ2ANXNtm3bYGZmhgEDBlR2KEQVqkOHDrh48SL09PQqO5RaYe3atejVqxe6d+9e2aGouHjxInR0dEq1zbfffgtBELQUEdU0t27dQkhICNzc3GBlZVXZ4RARlQve6aoCBEFATk5OZYdBWlQT3mOxWAwDAwOIxfzYqK5yc3OhUCjK1IaBgQF0dUv3e52enh709fXLtF+iilJQUIC8vLzKDoOIapga/+1p5cqVkEqlSE5ORlBQENq3bw9XV1fMnDkT2dnZynoREREYMWIEPDw80LZtW/j5+eHXX39VacvHxwc3b95EQkICpFIppFKpclxV4X5etWfPHkilUpVuEoV90v/8808MGDAAjo6O2L59e4njKKszZ85g4sSJeOedd9C2bVt06dIFCxcuVEsKgoKC4OLigtTUVIwbNw4uLi7o2LEjFi9eDLlcrlL32bNnmD59Otq1a4f27dtjxowZuH79ulo/5OLGohU15iMsLAxDhgyBu7s7HB0dMWDAABw6dEht25ycHHz33Xdwd3eHi4sLAgMDkZqaWuTYk9TUVMycOROdOnVC27Zt0adPH+zevbtEr1vhe3n69GnMnTsX7u7uaNeuHb788kukp6er1H3de3z37l1MnDgRbm5ucHJywuDBg3HixAm1/eXm5mLlypXo1asXHBwc4OXlhfHjx+POnTvKOgqFAhs3bkSfPn3g4OCATp06Ye7cuWrxXLp0CSNHjlS+lj4+Ppg5c6ZKnQMHDmDAgAFwcXFBu3bt8O677+KXX35Rri9qTFdAQAD69u2LW7duISAgAE5OTujcuTNCQ0PVjiclJQWBgYFwdnaGh4cHFi5ciD///LNM48RSU1Mxa9YseHl5oW3btvDx8cHXX3+t/MJUkte68LgiIyMREhKCzp07w8XFBRMnTkRGRgby8vKwYMECeHh4wMXFBTNnzlT7QiaVSvHNN9/g999/V75fAwYMwOnTp1XqFTe26dXPD6lUiqysLOzdu1f5WRMUFKRy3G86jwuP68CBA1i2bBk6d+4MJycnZGZmqu2/b9++RV6XCoUCnTt3xsSJE1Vie/m6yszMxIIFC+Dj44O2bdvCw8MDn3zyCa5cufLa487KysL333+PLl26oG3btujVqxfCwsLU7ogVvrZHjhxB3759lccbExOjFi9VD1evXsWoUaPQrl07uLi44KOPPsL58+cBvPicnTRpEgBgxIgRyvP/1c+IM2fOYODAgXBwcEC3bt2wb98+tf3IZDIsWLBAeY716NED69atU/nhoXC8TFhYGDZu3Iju3bvDwcEB//77r9aOn2qfws/4pKQkTJs2Da6urujYsSOWL18OQRDw4MEDfPbZZ2jXrh08PT2xYcOGN7YZFxeHYcOGwdnZGe3bt8dnn32mdt4W7vfff//FpEmT0K5dO7i7u+O7775Dbm6uSt3Y2FgMHToU7du3h4uLC3r16oWffvqpXF+H2q7WdC+cPHkyrKysMGXKFFy9ehW7du2Cubk5pk+fDuBFt8G3334bPj4+0NXVxfHjxzF//nwIgoAPP/wQADBr1ix8++23qFevHgIDAwEADRo00CiepKQkTJ06FR988AEGDx4MGxubEsdRVocOHUJOTg6GDh0KU1NTXLx4EVu2bMHDhw8RHBysUlcul2PkyJFwdHTEl19+ibi4OGzYsAHNmjXDsGHDALz4YvbZZ5/h4sWLGDp0KGxtbXH06FHMmDGjTHFu2rQJPj4+ePfdd5Gfn48DBw5g0qRJWLt2Ld555x1lvaCgIBw8eBD9+vWDk5MTTp8+jTFjxqi1999//2Hw4MEQiUT48MMPYW5ujpiYGHz11VfIzMzExx9/XKK4vvnmG0gkEowfPx5JSUnYtm0b7t+/j82bN0MkEinrFfUe//fffxgyZAiys7MREBAAMzMz7N27F5999hmCg4PRo0cPAC9e97FjxyIuLg59+vTBiBEj8Pz5c8TGxuLGjRuwtrYGAMydOxd79+7FgAEDEBAQgHv37mHr1q24evUqtm3bBj09PTx58gQjR46EmZkZxowZA4lEgnv37uHw4cPKWGNjYzFlyhR4eHhg2rRpAIDExET8/fff+Oijj177eqSnp2PUqFHo0aMHfH19ERUVhR9//BF2dnbo0qULgBdfsD/66CM8fvwYI0aMQIMGDbB///4yTcqRmpqKgQMHIiMjA4MHD4atrS1SU1MRFRWFnJwcyGSyEr3WhdatW4c6depgzJgxSE5OxpYtW6CrqwuRSASZTIbx48fjwoUL2LNnD5o2bYrx48erbH/69GlERkYiICAA+vr62LZtG0aNGoVdu3bBzs6uVMe2ZMkSzJ49G46Ojhg8eDAAKN/z0p7Hq1evhp6eHkaOHIm8vLwiu4f6+voiJCQEjx8/hoWFhbL87NmzePToEfz8/IqN9euvv0ZUVBSGDx+OFi1aIC0tDWfPnsW///6LNm3aFLmNIAj47LPPEB8fj4EDB8Le3h5//vknlixZokykX3b27FlER0dj2LBhMDQ0xObNmzFx4kQcP34cZmZmJXpNqWq4efMmPvzwQxgaGmLUqFHQ1dXFjh07EBAQgC1btqBDhw4ICAjA5s2bERgYCFtbWwBAixYtlG0kJydj0qRJGDhwIPz9/REREYGgoCC0adMGb7/9NgAgOzsbw4cPR2pqKoYMGYLGjRvj3Llz+Omnn/D48WN89dVXKnHt2bMHubm5GDx4MPT19WFiYlJxLwrVGl988QVatGiBqVOn4uTJk1izZg1MTU2xfft2dOzYEdOmTcMff/yBxYsXw8HBAR06dCiynb/++gujR4+GlZUVxo8fj5ycHGzZsgVDhw7Fnj171LrlTp48GU2bNsXUqVNx/vx5bN68GTKZDEuWLAHw4rocO3YspFIpJk6cCH19fSQnJ+Pvv//W+mtSqwg1XHBwsGBnZyfMnDlTpfzzzz8X3NzclMvZ2dlq23766adCt27dVMr69OkjDB8+vNj9vCoiIkKws7MT7t69qyzr2rWrYGdnJ8TExKjVL2kcw4cPLzKOV/3vf/8T7OzshP/973+v3cfatWsFqVQqpKSkKMtmzJgh2NnZCSEhISp1+/fvL/j7+yuXo6KiBDs7O2Hjxo3KMrlcLowYMUKws7MTIiIi3hj3jBkzhK5du6qUvRpnXl6e0LdvX2HEiBHKssuXLwt2dnbCggULVOoGBQUJdnZ2QnBwsLJs1qxZgqenp/D06VOVul988YXg6upa5OvyssL30t/fX8jLy1OWh4aGCnZ2dsKRI0eUZcW9xwsWLBDs7OyE06dPK8syMzMFHx8foWvXroJcLhcEQRB2794t2NnZCeHh4WpxKBQKQRAE4fTp04KdnZ3w+++/q6yPiYlRKT98+LBgZ2cnXLx4sdhj++6774R27doJBQUFxdYp6lwaPny4YGdnJ+zdu1dZlpubK3h6egoTJkxQlm3YsEGws7MTDh8+rCzLyckRevfurdZmSX355ZdCq1atijwuhUJR4te68Lj69u2r8r5OmTJFkEqlwqhRo1Ta/uCDD9TOVTs7O8HOzk64dOmSsiwlJUVwcHAQPv/8c2VZUee5IBT9+eHs7CzMmDFDrW5Jz+PC4+rWrdsbz+3ExETBzs5O2Lx5s0r5vHnzBGdnZ5XtX72uXF1dhfnz57+2/VePu/CcXL16tUq9CRMmCFKpVEhOTlbZX5s2bVTKrl27VmS8VPWNGzdOaNOmjXDnzh1lWWpqquDi4iJ8+OGHgiAIwsGDB4v9XCj8bH35un7y5InQtm1b4fvvv1eWrVq1SnB2dhaSkpJUtv/xxx8Fe3t74f79+4IgCMLdu3cFOzs7oV27dsKTJ0/K81CJlAo/4+fMmaMsKygoELy9vQWpVCqsXbtWWZ6eni44OjoqP/8Lz9GXv0v169dP8PDwEJ49e6Ysu3btmtCqVSvhyy+/VNtvYGCgSjzz5s0T7OzshGvXrgmCIAjh4eGCnZ0drwEtq/HdCwsNGTJEZbl9+/ZIS0tTdrWpU6eOcl1GRgaePn0KNzc33L17FxkZGeUej5WVFTp37qxWXhFxvLyPrKwsPH36FC4uLhAEAVevXlWrP3ToUJVlV1dXle6Sf/75J/T09JS/yAMvxv+U9c7cy3Gmp6cjIyMDrq6uKjH++eefAKC861Zo+PDhKsuCICA6Oho+Pj4QBAFPnz5V/ufl5YWMjAyV7lCv88EHH6jcLRg6dCh0dXVx8uRJlXpFvccnT56Eo6Mj2rdvrywzNDTEBx98gJSUFNy6dQsAEB0dDTMzM7XjAKC8m3bo0CEYGxvD09NT5XjatGmDevXqKe8iGRsbAwBOnDiB/Pz8Io9JIpEgOzsbsbGxJXoNXlavXj3069dPuayvrw8HBwfcvXtXWfbnn3/C0tIS3bp1U5YZGBionDOloVAocOTIEXTt2hUODg5q60UiUYlf60L9+vVTeV8dHR0hCALef/99lXqOjo548OABCgoKVMpdXFzQtm1b5XKTJk3QrVs3nDp1Sq07rqY0OY/79++vci0VxcbGBvb29oiMjFSWyeVyREVFwcfH57XbSyQSXLhwAampqSU+jpiYGOjo6Kh1afz0008hCIJa18FOnTop7/QBQKtWrWBkZKRyjlHVJ5fLERsbi+7du6NZs2bK8oYNG6Jv3744e/Zskd1fX9WyZUuV69rc3Bw2NjYq58OhQ4fg6uoKiUSicp106tQJcrlcretvz549YW5uXg5HSVS8gQMHKv+to6ODtm3bQhAElXKJRKJ2Pr/s0aNHuHbtGvz9/WFqaqosb9WqFTp16qT2XQSA2vexwu8WhZ+1EokEAHD06NEyj/ul4tWa7oVNmjRRWS48wdLT02FkZISzZ89i5cqVOH/+vMpYL+BF8lP4xbW8FDcjk6ZxPH78WGXZ2Ni42C9K9+/fR3BwMI4dO6Y29ufVP3gGBgZqf4hMTExUtrt//z4sLCxQt25dlXovf0nSxPHjx7FmzRpcu3ZNZQzNy1347t+/D7FYrPZ6vvXWWyrLT58+hUwmw44dO7Bjx44i9/f06VMAb34tX23b0NAQFhYWSElJUSkv6j2+f/8+nJyc1MoLu9Dcv38fdnZ2uHPnDmxsbF47YUFycjIyMjLg4eFR5PonT54AANzc3NCrVy+EhIRg48aNcHNzQ/fu3fHuu+8qJzcYNmwYDh48iNGjR8PS0hKenp7w9fWFt7d3sfsv1KhRI5X3BHhxjvzzzz/K5ZSUFFhbW6vV0/Qcefr0KTIzM5VdiYpS0te60KufEYXXWuPGjdXKFQoFMjIyVLq2vXpeAEDz5s2RnZ2Np0+fqnTb01RpzuNCL5+Hcrlcbb2JiQn09fXh5+eHn376CampqbC0tERCQgKePHkCX1/f18Y0bdo0BAUF4Z133kGbNm3QpUsX9O/fX+VL9atSUlLQsGFDGBkZqZQXdiF79Vp69T0ojFsmk702Nqpanj59iuzsbGV3+pe1aNECCoUCDx48eGM7xZ0PL/9dSk5Oxj///FPs5+PrrhMibSnq70xR37OMjY2RlpZWZBv3798HgGKvo1OnTiErKwv16tVTlr/698na2hpisVj5A7qfnx927dqF2bNnY+nSpfDw8ECPHj3Qu3dvTp5VjmpN0lXcSSMIAu7cuYOPP/4Ytra2CAoKQuPGjaGnp4eTJ09i48aNJcr6X/0yWai4X7iLSojKEoeXl5fK8qJFi4qc1l4ul+OTTz5RjsOxtbVFvXr1kJqaiqCgILV9lHZqaE29+jqdOXMGn332GTp06ICvv/4aFhYW0NPTQ0REBPbv31/q9guP67333oO/v3+RdQonMijpa/kmb7q7UFYKhQL169fHjz/+WOT6wg9xkUiE4OBgnD9/HsePH8eff/6JWbNmITw8HDt27IChoSHq16+Pffv24dSpU4iJiUFMTAz27NmD/v37Y/Hixa+No6LOEW0r7jPidZ8dpVXaz4lXleY8LvTyefjgwQOVu43Ai7GT7u7u8PX1xdKlS3Hw4EF8/PHHOHjwIIyNjd+YePv5+aF9+/Y4fPgwYmNjERYWhtDQUKxcuVI5pq+sijvHNHkPqPoryWeOQqGAp6cnRo0aVeT65s2bqyxr+/OaCCj670llfL69+reoTp062Lp1K+Lj43HixAn8+eefiIyMxI4dO7Bhw4Ya83e+stWapOt1jh07hry8PKxZs0blV4iiBvkX96Wp8M6ZTCZT/hv4/18kyjuOV4WHh6sst2zZssh6N27cwO3bt7F48WL0799fWa5Jt7JCTZo0QXx8PLKzs1Xudr08y14hExOTIm+Zv/o6RUVFwcDAAGFhYSpTTUdERKjtW6FQ4N69eyp/RJOTk1XqmZubw9DQEAqFAp06dXrt8bzptUxOTkbHjh2Vy8+fP8fjx49LdFeoSZMmSEpKUitPTExUrgde/Ap14cIF5OfnF/tcLGtra8TFxaFdu3Yl+sLg7OwMZ2dnfPHFF/jjjz8wbdo0REZGYtCgQQBedAv08fGBj48PFAoF5s2bhx07dmDcuHFF3sUpjaZNm+LWrVsQBEHlGirqHCkJc3NzGBkZ4ebNm8XWKelrXV5ePecA4Pbt26hbt64yAZZIJEXenSnp50RpzuOiWFhYqJ3frVq1AgA0a9YMjo6OOHjwIIYPH47o6Gh07969RFO9N2zYEB9++CE+/PBDPHnyBP7+/vj555+LTbqaNm2KuLg4ZGZmqtztKnxvmjZtWupjo6rP3NwcdevWLfa6FIvFaNy4sfI8KAtra2tkZWVpdJ0QVWWFf7uKu47MzMxU7nIBL/4+vdz7IDk5GQqFQuUOr1gshoeHBzw8PDBz5kz8/PPPWLZsGeLj43kdlRPeM8T//8rw8q8KGRkZal/wAaBu3bpFfmkq7Cb1cj/xrKysIqexLY84XtWpUyeV/xo2bFhkvcJfWV7ehyAI2LRpU4njfJWXlxfy8/Oxc+dOZZlCocDWrVvV6jZr1gyJiYkqXTuuX7+uNkOOjo4ORCKRyh2Ae/fu4ejRo2r7BqA2rf6WLVvU2uvVqxeioqJw48YNtbhejudNr+WOHTtUxkZt27YNBQUFJUq6unTpgosXL+LcuXPKsqysLOzcuRNNmzZVJng9e/bEs2fPinwNC987X19fyOVyrF69Wq1OQUGB8jxNT09X+8XM3t4eAJTdNp89e6ayXiwWK++YlMfzary8vJCamqry/uXm5qqcM6UhFovRvXt3HD9+HJcuXVJbLwhCiV/r8nLu3DmV8VQPHjzA0aNH4enpqby2ra2tkZGRgevXryvrPXr0SGUmyUL16tVT+6wpzXlcFAMDA7Xz++VZ2vz8/HD+/HlERETg2bNnb+xaKJfL1caa1q9fHw0bNnzteePt7Q25XK52fm/cuBEikahE1xJVPzo6OvD09MTRo0dVxgX/999/2L9/P1xdXWFkZKT88a4s45h9fX1x7tw55bjfl8lkMrUxmUTVRcOGDWFvb499+/ap/I24ceMGYmNji/yx69XP2sLvSIWftUV1ZXz1ewKVHe90AfD09ISenh4CAwMxZMgQPH/+HLt27UL9+vXVxve0adMG27Ztw+rVq/HWW2/B3NwcHh4e8PT0RJMmTfDVV18hMTEROjo6iIiIgJmZWYl/xS5NHJqytbWFtbU1Fi9ejNTUVBgZGSEqKqpMYyO6d+8OR0dHLF68GHfu3IGtra3KeLGX72wMHDgQGzduxMiRIzFw4EA8efIE27dvR8uWLfH8+XNlvS5duiA8PByjRo1C37598eTJE/z666+wtrZWGStU+HyfX375BWlpacop42/fvq2276lTpyI+Ph6DBw/GoEGD0LJlS6Snp+PKlSuIi4tDQkJCiY43Pz8fH3/8MXx9fZGUlIRff/0Vrq6uat22ijJmzBgcOHAAo0ePRkBAAExMTLBv3z7cu3cPK1euVCbF/fv3x759+7Bo0SJcvHgRrq6uyM7ORlxcHIYOHYru3bvDzc0NH3zwAdauXYtr164pz5/bt2/j0KFD+Oqrr9C7d2/s3bsX27ZtQ/fu3WFtbY3nz59j586dMDIyUn7gzp49G+np6ejYsSMsLS1x//59bNmyBfb29ipTNWvqgw8+wJYtWzB16lSMGDECFhYW+OOPP2BgYACg+DvIrzNlyhTExsYiICAAgwcPRosWLfD48WMcOnQIv/76a4lf6/JiZ2eHkSNHqkwZDwATJkxQ1vHz88OPP/6I8ePHIyAgADk5Odi2bRtsbGzUJsBo06YN4uLiEB4ejoYNG8LKygpOTk7ldh4XxdfXF4sXL8bixYthamr6xl83nz9/ji5duqBXr15o1aoV6tWrh7/++guXLl1Sea7Yq3x8fODu7o5ly5YhJSUFUqkUsbGxOHr0KD766KMyjwelqmvy5Mn466+/MGzYMAwbNgw6OjrYsWMH8vLylI9wsbe3h46ODkJDQ5GRkQF9fX107NgR9evXL/F+Ro4ciWPHjiEwMBD+/v5o06YNsrOzcePGDURFReHo0aOcOIOqrS+//BKjR4/GBx98gIEDByqnjDc2NlZ7nAnw4kfrwMBAdO7cGefPn8fvv/+Ovn37Kns6rFq1CmfOnEGXLl3QtGlT5XeuRo0awdXVtaIPr8Zi0oUXiUhwcDCWL1+OxYsXo0GDBhg6dCjMzc3Vnhfz+eef4/79+1i/fj2eP38ONzc3eHh4QE9PDyEhIZg/fz5WrFgBCwsLfPTRR5BIJGoPoS2PODSlp6eHn3/+Gd999x3Wrl0LAwMD9OjRAx9++KHKDHSloaOjg7Vr12LBggXYu3cvxGIxevTogc8//xxDhw5VfrEGXgzyXLx4MYKDg7Fo0SK0bNkSS5Yswf79+1W+LHp4eGDBggUIDQ3FwoULYWVlhWnTpiElJUUl6QKgfK0OHDiAw4cPo1OnTli2bBl69+6t0jWqQYMG2LVrF1atWoXDhw9j27ZtMDU1RcuWLZXPpiqJuXPn4o8//kBwcDDy8/PRp08fzJ49u0SJQ4MGDbB9+3b88MMP2LJlC3JzcyGVSvHzzz+rPHus8AvHmjVrsH//fkRHR8PU1BTt2rVTGbPzzTffoG3btti+fTuWLVsGHR0dNG3aFO+99x7atWsH4MVEGpcuXUJkZCT+++8/GBsbw9HRET/++KOyu8F7772HnTt34tdff4VMJoOFhQV8fX0xYcKEcklODA0N8csvv+C7777Dpk2bUK9ePfTv3x8uLi6YMGGCyjlSUpaWlti5cydWrFiBP/74A5mZmbC0tIS3tzfq1KkDiURSote6vHTo0AHOzs5YtWoV7t+/j5YtW2LRokXKP2oAYGZmhpCQEHz//ff44YcflM8OTE5OVku6goKCMHfuXCxfvhw5OTnw9/eHk5NTuZ3HRWnUqBFcXFzw999/Y9CgQcV2bS1Up04dDB06FLGxsYiOjoYgCLC2tsbXX3+tNqPoy8RiMdasWYPg4GBERkYqn3325Zdf4tNPPy3TMVDV9vbbb2Pr1q1YunQp1q5dC0EQ4OjoiB9++EE58Y2FhQXmz5+PtWvX4quvvoJcLsemTZtKlXTVrVsXmzdvxtq1a3Ho0CHs27cPRkZGaN68OSZMmFDuk2MRVaROnTph/fr1CA4ORnBwMHR1ddGhQwdMnz69yEmMli9fjhUrVmDp0qXQ1dXF8OHD8eWXXyrX+/j4ICUlRdnLwczMDG5ubrxWyplI4Ehk0pIjR47g888/V94JqkjXrl1D//798cMPP+C9994rlzb37NmDmTNnYvfu3UVOU06lt3HjRixatAgxMTGwtLSs7HA0JpVK8eGHH2Lu3LmVHQoREREAYOXKlQgJCUFcXBzv7FYBHNNF5SInJ0dlWS6XY/PmzTAyMkKbNm0qdN8A8Msvv0AsFhf7NHeqeK++T7m5udixYweaN29erRMuIiIiojdh90IqF99++y1ycnLg4uKCvLw8REdH49y5c5gyZYrWp+Jdv349Ll++jI4dO0JHR0c55fkHH3xQ5PNcqHKMHz8eTZo0QatWrZCZmYnff/8diYmJxU55T0RERFRTMOmictGxY0eEh4fjxIkTyM3NxVtvvYU5c+Yon3quTS4uLoiNjcXq1auRlZWFxo0bY8KECQgMDNT6vqnkvLy8sHv3bvzxxx+Qy+Vo2bIlli1bBj8/v8oOjYiIiEirOKaLiIiIiIhIizimi4iIiIiISIuYdBEREREREWkRky4iIiIiIiItYtJFRERERESkRUy6iIiIiIiItIhJFxERERERkRYx6SIiIiIiItIiJl1ERERERERa9H8yOsoZ9ZKHWQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAEvCAYAAAC35QvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQkklEQVR4nO3dd1hT598G8DsJhKGggAIuKqIBUVkCalVUqmhbcdtqxW3F/XNVwVkHaBVHlbpaqXu14qx7te5VrSJaN06WgqHKEHLeP3xzagRqiJGA3J/r6lXznPU9yTlJbs5znkgEQRBAREREREREeiE1dAFEREREREQfEoYsIiIiIiIiPWLIIiIiIiIi0iOGLCIiIiIiIj1iyCIiIiIiItIjhiwiIiIiIiI9YsgiIiIiIiLSI4YsIiIiIiIiPWLIIiIiegtBEAxdgtaKU61ERB8qhiwiohJs4cKFcHZ2LtB/Dx48MHTZucTFxcHZ2Rn+/v4a7eqas7OzdVqvUqnE9OnTsXXrVq2XefDgAZydneHn5/efbe/DsWPH0KdPn7fWQ0RE75eRoQsgIiLDcXZ2RmBgoEbbkydPcOLECZibm+OTTz7JtYy5uXlhlWdwM2bMQHR0NKZPn27oUt7q0aNH6Nu3L+zs7AxdChFRiceQRURUggUEBCAgIECj7fTp0zhx4gSsrKwQERFhoMr0Y9euXQAAIyPdPu506XpnZ2eHXbt2wdjYWKdt6kqlUhWpeoiISjKGLCIi+mA5OTkV+jaNjY0Nst38FLV6iIhKAt6TRUREBZKRkYGff/4ZXbp0ga+vL2rVqoX69evj66+/xrFjx/Jc5vbt2xg9ejT8/Pzg7u6Ojh07YteuXdi2bRucnZ2xcOFCrbYtCAI2bNiA9u3bw8PDA35+foiIiEBGRkae8+d1T5ZSqcR3332HwMBAeHh4oG7duujSpQvWrl2rMZ+zszO2bNkCAJgwYQKcnZ0RHR0NAAgJCYGzszPOnDmDoUOHws3NDfXr18eKFSveeg/UgwcP8L///Q/e3t7w8vJCr1698nze/P394ezsjLi4uFzT1PfSzZs3T3ys7tqZkJCgcX/af9Vz8+ZNjBkzBo0bN0bt2rXRqFEjfPPNN7h582auebt37w5nZ2ekpqZi1apVaN26Ndzc3PDxxx8jNDQUjx49ynN/iYhKIl7JIiIirWVmZiIoKAiXL19G+fLl4eXlBYlEgr///ht//PEHjh49isjISDRv3lxc5sKFC/j666+RlpYGFxcXeHh44MqVKxgxYgQ8PDwKtP2xY8di27ZtMDc3R4MGDcTAd/jwYa2Wz8jIQLdu3XD9+nU4ODigUaNGSE9Px9mzZ3HhwgVcvnwZM2fOBAAEBgbi4sWLuH//Pjw8PFClShU4ODhorG/ixIl4+vQpGjdujJs3b8LZ2fk/t//8+XN07doVL168QL169ZCWloZTp07h5MmTmDRpErp161ag50PN2dkZzZs3x4EDB2BmZobmzZvD2tr6P5c5dOgQhg8fjszMTDg7O8PLywt37tzB9u3bsW/fPsyfPx/NmjXLtdyECRNw4MABuLm5wc/PD2fPnkV0dDROnDiBnTt3wsLCQqd9ICL6kDBkERGR1tatW4fLly/jk08+wffffy/e55OTk4Pp06dj3bp1WLt2rRiysrKyEBISgrS0NEyYMAHdu3cHAGRnZ2P69OlYv3691tveu3cvtm3bBgcHB6xevRr29vYAgJiYGPTu3VurdezZswfXr19HYGAgZs+eDYlEAgC4d+8eOnXqhC1btmDw4MGoUqUKIiIiEBISgvv376NTp07o3LlzrvUlJiZi+/btqFKlinj/1sOHD/Pd/j///IMKFSpgy5YtKFeuHIBXIwIOGDAAM2fORJMmTVC5cmWtnxO1gIAAuLq64sCBA7C0tHzrvXRJSUkYNWoUsrKyMHPmTLRv316c9uuvv2LChAkYNWoUdu/enWsgjePHj2PlypWoV68eACA1NRVffPEF4uLisH37dp2DIhHRh4TdBYmISGvGxsZo0qQJRo0apTGQgkwmw5dffgkAGkO8//7777h79y4aNWokBizg1UAUEyZMQNWqVbXetjqQhYSEiAELAGrXro1BgwZptY6kpCQAQIUKFcSABQAODg4IDw/HrFmzUKpUKa1ratasGapUqQIAkEgkGuvMz8SJE8WABQCNGjVCly5dkJWVhc2bN2u97XexceNGvHjxAu3bt9cIWADQqVMntG/fHs+fP88zBH/xxRdiwAKAsmXLok2bNgCA69evv9/CiYiKCYYsIiLSWlBQEJYtW6YxkMI///yDv/76C/v27QPw6uqV2okTJwAALVq0yLUuIyOjPNvzolKpcO7cOchkMjRs2DDX9Ne7J/4XHx8fAMBPP/2E4cOHY8eOHXj69Km4jrZt2761m93rXFxctJ4XAGxtbTUCipr6/qkzZ84UaH26Onv2LACgZcuWeU7/7LPP8q3H3d09V5v6ald6erq+SiQiKtbYXZCIiAokOTkZ69evx6lTp3D79m0xpKiv4rw+7Pnjx48BvLpylBdtu8alpqbi5cuXsLa2hqmpaa7plSpV0mo9Hh4eCA0NxZw5c7B7927s3r0bEokEtWrVQsuWLfHll1+iTJkyWq0LQIHm/a861VfmEhISCrQ+XSUmJv5nPerXRX3l73V57bNMJgOQ/zDyREQlDUMWERFp7fTp0xgwYABevHgBOzs7eHp6wsnJCTVr1kTlypVz3bf08uVLAPn/3pQuv0OVF6lUKn7Rf5tevXohMDAQ+/fvxx9//IGzZ88iJiYGMTExWLlyJdatW4ePPvpI6+0WhImJyX9O1/b3vHJycgq03Te97XlXhyW5XJ5rmjZdIomISjqGLCIi0oogCBg/fjxevHiR50h4sbGxuZZRX8HKbzCI+Ph4rbZtZWUFExMTpKam4vnz57num0pOTi5Q8LCxsUGXLl3QpUsXqFQq/Pnnn5gxYwZiYmKwbNkyhIWFab2uglBfQXqT+vmpWLGi2KYOM3ntV1pa2jvVYWtrizt37uDhw4eoUaNGrun3798H8Op5IiKiguM9WUREpJXk5GTcv38flpaWeY4gp/6tp9e7jDVo0AAA8hxiXRAEHDp0SKttSyQS1K9fHyqVCgcPHsw1/ciRI1qtZ8aMGWjUqJF4TxLw6mqUt7c3Bg4cCEAz+On7qs2dO3c0BgZRU9/P5uvrK7aZm5sDgNgd83UXL17M1VaQWtX3pu3duzfP6bt3785VDxERaY8hi4iItGJhYQFjY2MolUqcO3dOY9q+ffuwaNEiAJoDX7Ro0QKVKlXC0aNHsXbtWrFdEATMnz9fHI1Om4DQs2dPAMCsWbNw69Ytsf3WrVvij/K+TYUKFZCUlIS5c+fin3/+Eduzs7PFYFGnTh2xXd1d7l2vHKkJgoCQkBCNbe/duxebN2+GhYWFRndL9aAaq1at0ujet2LFCsTExORat7or4osXL956b9QXX3wBc3NzbNmyRfzBZbXNmzeLv0X25siDRESkHXYXJCIirZiamqJLly5YvXo1evToAR8fH1haWuLGjRu4c+cOKlWqhJSUFKSlpSEjIwOmpqaQy+WYNWsW+vTpg6lTp2LTpk2oWrUqrl27hrt378LBwQH37t3T6l6khg0bon///li2bBnatWuH+vXrAwBOnTqFWrVqITk5+a3r6Nq1K3bt2oU///wT/v7+cHd3h1wuR2xsLB49eoRq1app/OaWeoj5RYsW4cKFC2jbtq3WIxnmxdHRETdu3ECLFi3g7e2NpKQkXLhwAcbGxpg1a5ZG97wePXpgz5492Lt3L1q1agVnZ2fxuW7bti22bdumsW5ra2tYWlpCqVSiS5cucHBwyPf3suzs7PDdd99h5MiRCAkJwYoVK+Do6Ig7d+7g2rVrMDMzw6xZs7QeUISIiDTxShYREWktNDQUkyZNQvXq1XHp0iX88ccfkMlkGDBgALZu3Yp69epBpVLh999/F5fx9vbGpk2b0Lx5c8THx+PQoUOwsLDADz/8IA5dbmFhodX2R40ahfnz56NWrVo4d+4cYmJi0L59e/z4449aLW9iYoLly5ejf//+sLGxwenTp3Hs2DGYm5tjwIAB+OWXXzRGz+vatSvatWsHAPjjjz/yvIJUEPb29li3bh1q166NY8eO4caNG2jWrBk2btwoPhdqderUwZo1a9C4cWMkJyfj6NGjKFeuHH7++We0bt0617qlUikiIiLg5OSE2NhYHD9+HM+ePcu3loCAAPz6669o3bo1njx5ggMHDkCpVKJTp07YvHmz1sPrExFRbhJBX0M7ERERveHJkydITU1FxYoVYWZmlmv6wIEDcejQISxfvhyNGjUyQIVERET6xytZRET03vz999/47LPP0KNHD2RkZGhMO3z4MI4cOQJra2t4e3sbqEIiIiL945UsIiJ6b7Kzs9G1a1dcunQJZcuWhYeHB0xMTBAXF4dr167B1NQUCxcuhJ+fn6FLJSIi0huGLCIieq9evHiBTZs2YefOnbh//z5evHiB8uXLo0GDBujTpw+cnJwMXSIREZFeMWQRERERERHpEe/JIiIiIiIi0iOGLCIiIiIiIj1iyCIiIiIiItIjI0MXUNQJggCViretERERERGVZFKpBBKJRKt5GbLeQqUS8PTpc0OXQUREREREBmRtXQoymXYhi90FiYiIiIiI9Ighi4iIiIiISI8YsoiIiIiIiPSIIYuIiIiIiEiPGLKIiIiIiIj0iCGLiIiIiIhIjxiyiIiIiIiI9Ighi4iIiIiISI/4Y8SFTCqVQCrV7kfMiN6FSiVApRIMXQYRERFRicOQVYikUgnKljWHTMYLiPT+5eSokJr6gkGLiIiIqJAxZBUiqVQCmUyKH9Yfx8PEZ4Yuhz5glWzLYHDXhpBKJQxZRERERIWsSIWsJ0+eYObMmTh69CgyMzPh4+ODsWPHwsnJCQBw9epVhIWFISYmBtbW1ujVqxd69OghLq9SqRAZGYlffvkFaWlp8PHxwaRJk1ClShVD7VKeHiY+w92HKYYug4iIiIiI3oMi1W9t8ODBiIuLw7Jly/Drr7/C1NQUvXr1Qnp6OlJSUtC7d284ODhg8+bNGDx4MCIiIrB582Zx+UWLFmHdunWYNm0aNmzYAJVKhX79+iErK8uAe0VERERERCVJkbmS9ezZM1SqVAnBwcFQKBQAgEGDBqFt27a4ceMGTp48CWNjY0ydOhVGRkZwcnISA1nHjh2RlZWFqKgojB49Gk2bNgUAzJs3D40bN8a+ffvQunVrA+4dERERERGVFEXmSlaZMmUwZ84cMWA9ffoUK1asgL29PapXr45z587B19cXRkb/5sL69evj7t27SE5OxrVr1/D8+XM0aNBAnG5paQlXV1ecPXu20PeHiIiIiIhKpiJzJet1EydOxKZNmyCXy7F48WKYm5sjPj5eDGBqtra2AIDHjx8jPj4eAFChQoVc86in6crISD9ZlKMKUmHjMUdERERU+IpkyOrZsye+/PJLrF27FoMHD8a6deuQkZEBuVyuMZ+JiQkAIDMzE+np6QCQ5zzPnuk+kp9UKoGVVSmdlycyJEtLM0OXQERERFTiFMmQVb16dQBAWFgY/vrrL6xZswampqa5BrDIzMwEAJibm8PU1BQAkJWVJf5bPY+Zme5fNFUqAUrlC52Xf51MJuWXXipUSmU6cnJUhi6DiIiIqNiztDTTupdQkQlZT58+xcmTJ9GyZUvxviupVIrq1asjMTER9vb2SExM1FhG/djOzg7Z2dlim4ODg8Y8zs7O71Rbdja/pFLxlJOj4vFLREREVMiKzA0bycnJGDlyJE6ePCm2vXz5ErGxsXBycoKPjw/Onz+PnJwccfqpU6fg6OgIGxsbuLi4oHTp0jh9+rQ4XalUIjY2Fj4+PoW6L0REREREVHIVmZClUCjg5+eH6dOn4+zZs7h+/TpCQkKgVCrRq1cvdOzYEf/88w/Gjx+PmzdvIjo6GitWrEBwcDCAV/diBQUFISIiAgcPHsS1a9cwYsQI2NvbIyAgwMB7R0REREREJUWR6S4IAHPnzsWcOXMwYsQIpKWlwdvbG2vXrkXFihUBAD/99BPCwsLQvn17lC9fHmPGjEH79u3F5YcNG4bs7GxMmDABGRkZ8PHxwfLly2FsbGyoXSIiIiIiohJGIgiCYOgiirKcHBWePn2ul3UZGUlhZVUK477fhbsPU/SyTqK8VK1khfD/fYaUlOe8J4uIiIhID6ytS2k98EWR6S5IRERERET0IWDIIiIiIiIi0qMidU8WEX34pFIJpFKJocugEkClEqBSsUc8EREVPoYsIio0UqkEVlZmkEplhi6FSgCVKgcpKekMWkREVOgYsoio0Ly6iiXDnZ0/Iv3JY0OXQx8wM5sKcGz9NaRSCUMWEREVOoYsIip06U8eIz3hnqHLICIiInovOPAFERERERGRHjFkERERERER6RFDFhERERERkR4xZBEREREREekRQxYREREREZEeMWQRERERERHpEUMWERERERGRHjFkERERERER6RFDFhERERERkR4xZBEREREREekRQxYREREREZEeMWQRERERERHpEUMWERERERGRHjFkERERERER6RFDFhERERERkR4xZBEREREREekRQxYREREREZEeMWQRERERERHpUZEKWampqZg0aRL8/Pzg5eWFrl274ty5c+L03r17w9nZWeO/7t27i9MzMzMxZcoUNGjQAJ6enhg1ahSePn1qiF0hIiIiIqISysjQBbxu5MiRSEpKwty5c2FjY4PVq1ejb9++2LJlC6pVq4a///4b3377LZo3by4uY2xsLP7722+/xblz57Bw4ULI5XJMnjwZw4YNw5o1awyxO0REREREVAIVmZAVFxeH48ePY926dahbty4AYOLEiTh69Ch27NiBoKAgPHnyBO7u7ihfvnyu5RMSErB161YsWbIE3t7eAIC5c+eiVatWuHDhAjw9PQt1f4iIiIiIqGQqMiHLysoKy5YtQ506dcQ2iUQCiUQCpVKJv//+GxKJBI6Ojnkuf/78eQBA/fr1xTZHR0fY2dnh7Nmz7xSyjIz006tSJitSvTOpBChqx1xRq4c+fDzmiIjIEIpMyLK0tESTJk002vbu3Yu4uDiMGzcO169fh4WFBaZOnYrjx4/D3NwcrVq1wqBBgyCXy5GQkAArKyuYmJhorMPW1hbx8fE61yWVSmBlVUrn5YkMydLSzNAlEBkUzwEiIjKEIhOy3vTnn38iNDQUAQEBaNq0KcaNG4fMzEy4ubmhd+/euHr1KmbNmoVHjx5h1qxZSE9Ph1wuz7UeExMTZGZm6lyHSiVAqXzxLrsiksmk/MCnQqVUpiMnR2XoMkQ8B6iwFbVzgIiIii9LSzOte0gUyZB14MABjB49Gl5eXoiIiAAATJ06FWPHjkWZMmUAAAqFAsbGxhgxYgTGjBkDU1NTZGVl5VpXZmYmzMze7UtddjY/oKl4yslR8filEo3nABERGUKR66y+Zs0aDB06FM2aNcOSJUvE7n9GRkZiwFKrUaMGACA+Ph729vZITU3NFbQSExNhZ2dXOMUTEREREVGJV6RC1rp16zBt2jR069YNc+fO1ej+1717d4SGhmrMf/nyZRgbG6Nq1aqoW7cuVCqVOAAGANy5cwcJCQnw8fEptH0gIiIiIqKSrch0F7xz5w7Cw8PRokULBAcHIzk5WZxmamqKli1bIjw8HG5ubmjUqBEuX76MWbNmoW/fvihdujRKly6Nzz//HBMmTEB4eDjMzMwwefJk+Pr6wsPDw3A7RkREREREJUqRCVl79+7Fy5cvsX//fuzfv19jWvv27TFz5kxIJBKsXr0a4eHhKF++PHr16oX+/fuL802bNg3h4eEYMmQIAMDPzw8TJkwo1P0gIiIiIqKSTSIIgmDoIoqynBwVnj59rpd1GRlJYWVVCuO+34W7D1P0sk6ivFStZIXw/32GlJTnReqmf/U5ELtyKtIT7hm6HPqAmdk5wLXnpCJ3DhARUfFlbV1K69EFi9Q9WURERERERMUdQxYREREREZEeMWQRERERERHp0TsNfPHy5UsYGxsDAJRKJXbs2AEjIyN89tlnsLCw0EuBRERERERExYlOISszMxOhoaF4/Pgx1q9fj4yMDHTu3Bn37t2DIAhYunQpNmzYAFtbW33XS0REREREVKTp1F1wyZIl2LVrF+zt7QEAO3bsQFxcHL788ktMnToVqampWLx4sV4LJSIiIiIiKg50upK1d+9etGzZEvPmzQMAHD58GGZmZhg3bhzkcjni4uKwe/duvRZKRERERERUHOh0JevBgwdo1KgRAEClUuHs2bOoW7cu5HI5AMDR0RHJycn6q5KIiIiIiKiY0ClklS5dGpmZmQCAixcvIi0tDQ0aNBCnJyUloWzZsnopkIiIiIiIqDjRKWQpFArs3LkTT58+xZo1ayCRSNC0aVMAQHx8PDZt2oSaNWvqs04iIiIiIqJiQaeQFRwcjCtXrqBhw4bYtWsXmjRpAicnJ5w/fx4tWrRAUlISvv76a33XSkREREREVOTpNPBFgwYNsHr1auzYsQP29vbo3r07AMDGxgY+Pj4IDg6Gt7e3XgslIiIiIiIqDnQKWY8ePYKLiws8PDw02qtWrYqoqCg8e/YMp06dQv369fVRIxERERERUbGhU3fBTz75BAcOHMh3+v79+zFw4ECdiyIiIiIiIiqutLqSdf/+fWzbtk18LAgC9u3bh7t37+aaVxAEHDx4EMbGxnorkoiIiIiIqLjQKmRVqlQJe/bswc2bNwEAEokE+/btw759+/Jdpnfv3vqpkIiIiIiIqBjRKmRJpVIsWbIE9+/fhyAI6NOnD/r376/x21ivz1uuXDk4OTnpvVgiIiIiIqKiTuuBLypXrozKlSsDAIYMGYKAgAAoFIr3VhgREREREVFxpNPAF0OGDIGFhQVmzpyJZ8+eie2RkZGYNm0anjx5orcCiYiIiIiIihOdQtbdu3fRqVMnrFy5Evfv3xfbExMTsXbtWnTu3BmJiYl6K5KIiIiIiKi40ClkLVy4ENnZ2Vi9ejVq164ttk+dOhUbNmzA8+fPsXDhQr0VSUREREREVFzoFLLOnj2LHj16wNvbO9c0Dw8PfPXVVzh+/Pg7F0dERERERFTc6BSylEolrKys8p1ua2uL5ORknYsiIiIiIiIqrnQKWVWqVMGxY8fynX7y5ElUrFixwOtNTU3FpEmT4OfnBy8vL3Tt2hXnzp3TWG+HDh3g7u6OVq1a4bffftNYPjMzE1OmTEGDBg3g6emJUaNG4enTpwWug4iIiIiISFc6hazAwEAcPnwY8+bNQ2pqqtiuVCoRGRmJ/fv3IzAwsMDrHTlyJC5cuIC5c+di8+bNqFmzJvr27Yvbt2/j1q1bCA4ORuPGjREdHY3OnTtjzJgxOHnypLj8t99+i2PHjmHhwoVYuXIlbt++jWHDhumyi0RERERERDrR+neyXtenTx+cPHkSS5cuxbJly2BlZQWJRIKUlBSoVCrUq1cP/fv3L9A64+LicPz4caxbtw5169YFAEycOBFHjx7Fjh078OTJEzg7O2PEiBEAACcnJ8TGxuKnn35CgwYNkJCQgK1bt2LJkiXivWJz585Fq1atcOHCBXh6euqyq0RERERERAWi05UsIyMjREVFYebMmWjatClsbGxgaWmJhg0bYurUqYiKioKxsXGB1mllZYVly5ahTp06YptEIoFEIoFSqcS5c+fQoEEDjWXq16+P8+fPQxAEnD9/XmxTc3R0hJ2dHc6ePavLbhIRERERERWYTleygFcBqF27dmjXrp1eCrG0tESTJk002vbu3Yu4uDiMGzcOW7Zsgb29vcZ0W1tbpKenIyUlBQkJCbCysoKJiUmueeLj49+pNiMjnbJoLjKZftZDpK2idswVtXrow8djjoiIDEHnkAUACQkJOHLkCB4+fIiOHTvC3NwcCQkJGr+dpas///wToaGhCAgIQNOmTZGRkQG5XK4xj/pxVlYW0tPTc00HABMTE2RmZupch1QqgZVVKZ2XJzIkS0szQ5dAZFA8B4iIyBB0DlmrVq1CREQEsrKyIJFI0KBBA2RmZmLgwIHo1q0bJkyYoHNRBw4cwOjRo+Hl5YWIiAgAr8JSVlaWxnzqx2ZmZjA1Nc01HXg14qCZme4fsiqVAKXyhc7Lv04mk/IDnwqVUpmOnByVocsQ8RygwlbUzgEiIiq+LC3NtO4hoVPIOnz4MMLDw1GvXj189tlnmDx5MgCgWrVq8PT0xNq1a+Hq6ooOHToUeN1r1qxBWFgYWrVqhe+++068OlWhQgUkJiZqzJuYmAhzc3NYWFjA3t4eqampyMrK0riilZiYCDs7O112U5SdzQ9oKp5yclQ8fqlE4zlARESGoFNn9eXLl8PV1RVRUVEICAgQ2x0cHLBq1SrUrl0b69evL/B6161bh2nTpqFbt26YO3euRljy9vbGmTNnNOY/deoUvLy8IJVKUbduXahUKnEADAC4c+cOEhIS4OPjo8NeEhERERERFZxOIevKlSv4/PPPIZPJck0zMjJC27Ztcffu3QKt886dOwgPD0eLFi0QHByM5ORkJCUlISkpCWlpaejevTsuXbqEiIgI3Lp1C1FRUdizZw/69esHALCzs8Pnn3+OCRMm4PTp07h06RJGjhwJX19feHh46LKbREREREREBabzPVlvjuL3uqysLGRnZxdofXv37sXLly+xf/9+7N+/X2Na+/btMXPmTCxatAizZ8/GypUrUblyZcyePVtjWPdp06YhPDwcQ4YMAQD4+fm9071hREREREREBaVTyFIoFDh8+DCCgoJyTcvJycFvv/2GGjVqFGidAwYMwIABA/5zHj8/P/j5+eU73dzcHNOnT8f06dMLtG0iIiIiIiJ90am7YFBQEI4fP47p06fj1q1bAIAXL17g0qVLGDBgAGJjY/HFF1/otVAiIiIiIqLiQKcrWYGBgbh27RqWL1+OtWvXAoDYRU8QBHTq1AmdOnXSX5VERERERETFhM73ZH3zzTdo2bIldu7cibt370KlUqFy5cpo2bKlxn1SREREREREJYnOIQsA3Nzc4Obmpq9aiIiIiIiIij2tQtb9+/dRrlw5mJmZiY+1IZFIUKpUKVhZWeleIRERERERUTGiVcgKCAjArFmzEBgYCABo0aIFJBKJ1hupVKkS5s2bhzp16uhWJRERERERUTGhVchq164dHBwcNB5rE7IEQYBSqcSJEycwefJkREdH614pERERERFRMaBVyJoxY4bG45kzZxZoI/PmzcOqVasKtAwREREREVFx9E4DXwiCgJiYGDx48AByuRwVK1ZEzZo1c83n5eWFxMTEd9kUERERERFRsaBzyPrzzz8RGhqKe/fuabQ7ODggLCwM3t7eYluTJk3QpEkT3askIiIiIiIqJnQKWbdu3ULfvn3x8uVLtGvXDjVq1EBOTg5u3LiBXbt24euvv0Z0dDQcHR31XS8REREREVGRplPIWrRoEaRSKaKjo6FQKDSm9evXD126dMHSpUsLfO8WERERERFRcSfVZaGTJ0+ia9euuQIWACgUCnTt2hUnTpx45+KIiIiIiIiKG51CllKpROXKlfOdXqVKFaSkpOhcFBERERERUXGlU8iyt7fHpUuX8p3+119/wdbWVueiiIiIiIiIiiudQlbz5s2xdetWbNmyJde0zZs3Y9u2bfD393/n4oiIiIiIiIobnQa+GDRoEA4ePIhx48Zh8eLFqFatGoBXow4+ePAAFSpUwKBBg/RaKBERERERUXGg05UsS0tLbNiwAe3bt0dKSgqOHDmCI0eOICUlBe3atcOmTZtgZWWl71qJiIiIiIiKPJ2uZB04cAA+Pj4IDw9HWFgYUlJSIAgCrK2tIZFI9F0jERERERFRsaHTlazx48dj2bJlAACJRAJra2vY2NgwYBERERERUYmnU8jKyspClSpV9F0LERERERFRsadTyOrYsSPWrFmDhw8f6rseIiIiIiKiYk2ne7KysrLw6NEjNG/eHJUrV4aNjQ1kMpnGPBKJBGvWrNFLkURERERERMWFTiFr06ZN4r/v37+P+/fv55rnXe/PWrp0KY4dO4bVq1eLbRMmTMAvv/yiMV+lSpVw6NAhAIBKpUJkZCR++eUXpKWlwcfHB5MmTWLXRiIiIiIiKjQ6haxr167puw4Na9euxfz58+Ht7a3R/vfff2PAgAEICgoS216/grZo0SKsW7cOM2fOhL29PWbPno1+/fphx44dkMvl77VmIiIiIiIiQMd7st6XhIQEDBgwABEREahatarGNEEQcPPmTdSuXRvly5cX/7O2tgbwqgtjVFQUhg0bhqZNm8LFxQXz5s1DfHw89u3bZ4C9ISIiIiKikkjnkPX8+XMsWLAArVu3hru7O7y8vNCxY0esWLEC2dnZOq3zypUrMDY2xvbt2+Hu7q4x7d69e3jx4gWqVauW57LXrl3D8+fP0aBBA7HN0tISrq6uOHv2rE71EBERERERFZRO3QWfPn2Krl27Ii4uDhYWFnByckJ2djbu3LmD7777Dnv27MGqVasK3EXP398f/v7+eU67fv06AGD16tX4448/IJVK4efnhxEjRsDCwgLx8fEAgAoVKmgsZ2trK07TlZGRfi74yWRF6sIhlQBF7ZgravXQh4/HHBERGYJOIWv+/Pm4d+8exo0bh6+++gpGRq9Wk5WVhRUrVmDu3LlYvHgx/ve//+mt0OvXr0MqlcLW1hZLlizBvXv3MGvWLNy4cQMrV65Eeno6AOQKdiYmJnj27JnO25VKJbCyKvVOtRMZiqWlmaFLIDIongNERGQIOoWsw4cPo3PnzujRo4dGu1wuR//+/XH79m3s2LFDryFr4MCB+Oqrr2BlZQUAUCgUKF++PL744gtcvnwZpqamAF4FPfW/ASAzMxNmZrp/yKpUApTKF+9W/P+TyaT8wKdCpVSmIydHZegyRDwHqLAVtXOAiIiKL0tLM617SOgUstLS0uDi4pLvdHd3d+zevVuXVedLKpWKAUutRo0aAID4+Hixm2BiYiIcHBzEeRITE+Hs7PxO287O5gc0FU85OSoev1Si8RwgIiJD0Kmzeq1atfDHH3/kO/3ChQv/GcJ0MWbMGPTq1Uuj7fLlywCA6tWrw8XFBaVLl8bp06fF6UqlErGxsfDx8dFrLURERERERPnRKWSNHz8e58+fx+TJk/HkyROxPT09HQsXLsT+/fsxceJEqFQqjf/eRcuWLXHy5ElERkbi3r17+P333zFu3Di0bt0aTk5OkMvlCAoKQkREBA4ePIhr165hxIgRsLe3R0BAwDttm4iIiIiISFs6dRccPnw4JBIJNm3ahE2bNsHKygpyuRxJSUlQqVQQBAGdO3fWWEYikSA2NlbnQj/55BPMnz8fy5Ytw48//ggLCwsEBgZi+PDh4jzDhg1DdnY2JkyYgIyMDPj4+GD58uUwNjbWebtEREREREQFoVPIsrOzg52dXa72KlWqvHNBajNnzszV9umnn+LTTz/NdxmZTIZvvvkG33zzjd7qICIiIiIiKgidQtbq1av1XQcREREREdEHgb/SSEREREREpEcMWURERERERHrEkEVERERERKRHDFlERERERER6pFXIio+Pf991EBERERERfRC0ClkdOnTAxo0bxceRkZG4fv36eyuKiIiIiIiouNIqZKWlpSEzM1N8HBkZib///vu9FUVERERERFRcafU7WVWqVMHixYvx+PFjlCpVCgCwf/9+xMXF5buMRCLB4MGD9VMlERERERFRMaFVyBoxYgRGjRqFn3/+GcCrALVv3z7s27cv32UYsoiIiIiIqCTSKmS1aNECv//+O27duoWsrCz06dMHwcHBqF+//vuuj4iIiIiIqFjRKmQBgJWVFby9vQEAPj4+qF+/Pho0aPDeCiMiIiIiIiqOtA5Zr1u9ejUAQBAExMTE4MGDB5DL5ahYsSJq1qyp1wKJiIiIiIiKE51CFgD8+eefCA0Nxb179zTaHRwcEBYWJl71IiIiIiIiKkl0Clm3bt1C37598fLlS7Rr1w41atRATk4Obty4gV27duHrr79GdHQ0HB0d9V0vERERERFRkaZTyFq0aBGkUimio6OhUCg0pvXr1w9dunTB0qVLMXPmTL0USUREREREVFxo9WPEbzp58iS6du2aK2ABgEKhQNeuXXHixIl3Lo6IiIiIiKi40SlkKZVKVK5cOd/pVapUQUpKis5FERERERERFVc6hSx7e3tcunQp3+l//fUXbG1tdS6KiIiIiIiouNIpZDVv3hxbt27Fli1bck3bvHkztm3bBn9//3cujoiIiIiIqLjRaeCLQYMG4eDBgxg3bhwWL16MatWqAXg16uCDBw9QoUIFDBo0SK+FEhERERERFQc6XcmytLTEhg0b0L59e6SkpODIkSM4cuQIUlJS0K5dO2zatAlWVlb6rpWIiIiIiKjI0/nHiG1sbBAeHo6wsDCkpKRAEARYW1tDIpHosz4iIiIiIqJiReeQpSaRSGBtba2PWoiIiIiIiIq9dw5Z78vSpUtx7NgxrF69Wmy7evUqwsLCEBMTA2tra/Tq1Qs9evQQp6tUKkRGRuKXX35BWloafHx8MGnSJFSpUsUQu0BERJQnqVQCqZQ9P+j9U6kEqFSCocsgKnGKZMhau3Yt5s+fD29vb7EtJSUFvXv3hr+/P6ZMmYKLFy9iypQpKFWqFDp27AgAWLRoEdatW4eZM2fC3t4es2fPRr9+/bBjxw7I5XJD7Q4REZFIKpWgrJUZZFKZoUuhEiBHlYPUlHQGLaJCVqRCVkJCAiZPnozTp0+jatWqGtM2bdoEY2NjTJ06FUZGRnByckJcXByWLVuGjh07IisrC1FRURg9ejSaNm0KAJg3bx4aN26Mffv2oXXr1oW/Q0RERG+QSiWQSWVY+vsqPHqWYOhy6ANWsYwdgpv0gFQqYcgiKmRFKmRduXIFxsbG2L59O3744Qc8fPhQnHbu3Dn4+vrCyOjfkuvXr4+lS5ciOTkZjx49wvPnz9GgQQNxuqWlJVxdXXH27FmGLCIiKlIePUtA3JMHhi6DiIjeA51CVmhoKLp06QJ3d3cAwIsXLzBt2jT069cPTk5OOhfj7++f748Yx8fHQ6FQaLTZ2toCAB4/foz4+HgAQIUKFXLNo56mKyMjnUa6z0Um0896iLRV1I65olYPffiK4jFXFGuiDxuPOaLCp1XIGjBgAGrXrg03NzfUrl0bW7ZsQcOGDcWQlZmZia1bt6JNmzbvFLL+S0ZGRq77qkxMTMTtp6enA0Ce8zx79kzn7UqlElhZldJ5eSJDsrQ0M3QJRAbFc4CI5wGRIWgVsrKysrB69Wo8e/YMEokEEokE69evx+PHj1G7dm1UrFgRgvB++/qampoiKytLoy0zMxMAYG5uDlNTU7FW9b/V85iZ6f7molIJUCpf6Lz862QyKd/oqFAplenIyVEZugwRzwEqbEXtHAB4HlDhK4rnAVFxZGlppvWVYa1CVlRUFADg3r17uHTpEkaPHo34+HgsWrQI6enpYvCKiorC7du34eHhARcXF8hk+hs5yd7eHomJiRpt6sd2dnbIzs4W2xwcHDTmcXZ2fqdtZ2fzjYmKp5wcFY9fKtF4DhDxPCAyhAJ10nVwcBAHkBg+fDj+/PNP7Ny5ExMnToQgCLh79y5mzpyJjh07agy/rg8+Pj44f/48cnJyxLZTp07B0dERNjY2cHFxQenSpXH69GlxulKpRGxsLHx8fPRaCxERERERUX60ClknTpyAUqnM1S6RSFC9enV8+umnAICpU6fi/PnzWL9+PYYPH67XQjt27Ih//vkH48ePx82bNxEdHY0VK1YgODgYwKt7sYKCghAREYGDBw/i2rVrGDFiBOzt7REQEKDXWoiIiIiIiPKjVXfBPn36QCKRoHLlyqhduzYkEgkePXqE9PT0XPc7yeVyeHp6wtPTU6+F2tjY4KeffkJYWBjat2+P8uXLY8yYMWjfvr04z7Bhw5CdnY0JEyYgIyMDPj4+WL58OYyNjfVaCxERERERUX60Cll79uzB5cuXxf8EQcD8+fOxYMECVK1aFU5OTpBIJLh37x68vb31EmpmzpyZq83NzQ0bN27MdxmZTIZvvvkG33zzzTtvn4iIiIiISBdahayqVauiatWqCAwMBAC4uLhg8ODBqFChAmJjY8Xg9e233yIsLAyurq7w8PBASEjIey2eiIiIiIioqNHpx4gB4KOPPkJgYCA6duyIp0+f4uOPP8b48eMhlUpx4cIFHD58mCGLiIiIiIhKHJ1Clo+PD8qVKyc+lsvl8PHxgZeXF1xdXfHVV1/prUAiIiIiIqLiRKeQtXr1ao3HpUuXztVGRERERERUEhXod7KIiIiIiIjovzFkERERERER6RFDFhERERERkR4xZBEREREREekRQxYREREREZEeMWQRERERERHpEUMWERERERGRHjFkERERERER6RFDFhERERERkR4xZBEREREREekRQxYREREREZEeMWQRERERERHpEUMWERERERGRHjFkERERERER6ZGRoQsgIiIiopJHKpVAKpUYugwqAVQqASqVUKjbZMgiIiIiokIllUpgVdYMUpnM0KVQCaDKyUFKanqhBi2GLCIiIiIqVFKpBFKZDBcXL8U/jx4buhz6gJWuWAEeA4MhlUoYsoiIiIjow/fPo8dQxsUZugwivePAF0RERERERHpU7EJWQkICnJ2dc/0XHR0NALh69SqCgoLg4eEBf39/rFq1ysAVExERERFRSVLsugteu3YNJiYmOHDgACSSf0eksbCwQEpKCnr37g1/f39MmTIFFy9exJQpU1CqVCl07NjRgFUTEREREVFJUexC1vXr11G1alXY2trmmrZy5UoYGxtj6tSpMDIygpOTE+Li4rBs2TKGLCIiIiIiKhTFrrvg33//DScnpzynnTt3Dr6+vjAy+jc71q9fH3fv3kVycnJhlUhERERERCVYsbySZWVlhW7duuHOnTv46KOPMHDgQPj5+SE+Ph4KhUJjfvUVr8ePH6NcuXI6bdPISD9ZVCYrdpmWirmidswVtXrow1cUj7miWBN92IriMVcUa6IPW2Efc8UqZGVnZ+P27duoXr06QkJCULp0afz222/o378/fv75Z2RkZEAul2ssY2JiAgDIzMzUaZtSqQRWVqXeuXYiQ7C0NDN0CUQGxXOAiOcBEVD450GxCllGRkY4ffo0ZDIZTE1NAQC1a9fGjRs3sHz5cpiamiIrK0tjGXW4Mjc312mbKpUApfLFuxX+/2QyKd/oqFAplenIyVEZugwRzwEqbEXtHAB4HlDh43lApJ/zwNLSTOsrYsUqZAFAqVK5ryrVqFEDx44dg729PRITEzWmqR/b2dnpvM3s7KL1xkSkrZwcFY9fKtF4DhDxPCACCv88KFYdYm/cuAEvLy+cPn1aoz0mJgbVq1eHj48Pzp8/j5ycHHHaqVOn4OjoCBsbm8Iul4iIiIiISqBiFbKcnJxQrVo1TJ06FefOncOtW7cwY8YMXLx4EQMHDkTHjh3xzz//YPz48bh58yaio6OxYsUKBAcHG7p0IiIiIiIqIYpVd0GpVIolS5Zgzpw5GD58OJRKJVxdXfHzzz+Lowr+9NNPCAsLQ/v27VG+fHmMGTMG7du3N3DlRERERERUUhSrkAUA5cqVw4wZM/Kd7ubmho0bNxZiRURERERERP8qVt0FiYiIiIiIijqGLCIiIiIiIj1iyCIiIiIiItIjhiwiIiIiIiI9YsgiIiIiIiLSI4YsIiIiIiIiPWLIIiIiIiIi0iOGLCIiIiIiIj1iyCIiIiIiItIjhiwiIiIiIiI9YsgiIiIiIiLSI4YsIiIiIiIiPWLIIiIiIiIi0iOGLCIiIiIiIj1iyCIiIiIiItIjhiwiIiIiIiI9YsgiIiIiIiLSI4YsIiIiIiIiPWLIIiIiIiIi0iOGLCIiIiIiIj1iyCIiIiIiItIjhiwiIiIiIiI9YsgiIiIiIiLSI4YsIiIiIiIiPfrgQpZKpcKCBQvQuHFjeHh44Ouvv8b9+/cNXRYREREREZUQH1zIWrRoEdatW4dp06Zhw4YNUKlU6NevH7KysgxdGhERERERlQAfVMjKyspCVFQUhg0bhqZNm8LFxQXz5s1DfHw89u3bZ+jyiIiIiIioBPigQta1a9fw/PlzNGjQQGyztLSEq6srzp49a8DKiIiIiIiopDAydAH6FB8fDwCoUKGCRrutra04raCkUgmsrUu9c20AIJG8+v/Yvv7IyVHpZZ1EeZHJXv39pEwZMwiCgYt5jfocqNFpOARVjmGLoQ+aRCoDUPTOAeDf82BUiwHI5nlA75FRMTgPfL4ZCSGb5wG9PxIj/Z0HUqlE63k/qJCVnp4OAJDL5RrtJiYmePbsmU7rlEgkkMm0f0K1Uaa0qV7XR5QfqbRoXqw2LmVp6BKohCiq5wAAWJpZGLoEKiGK8nlgYsnPAyochX0eFN2zTgempq/Cy5uDXGRmZsLMzMwQJRERERERUQnzQYUsdTfBxMREjfbExETY2dkZoiQiIiIiIiphPqiQ5eLigtKlS+P06dNim1KpRGxsLHx8fAxYGRERERERlRQf1D1ZcrkcQUFBiIiIgLW1NSpVqoTZs2fD3t4eAQEBhi6PiIiIiIhKgA8qZAHAsGHDkJ2djQkTJiAjIwM+Pj5Yvnw5jI2NDV0aERERERGVABJBKGqDehIRERERERVfH9Q9WURERERERIbGkEVERERERKRHDFlERERERER6xJBFRERERESkRwxZREREREREesSQRUREREREpEcMWXrGEfGJSFd8/6CSjMc/EX1IGLL0RKlUYsyYMTh37lyhbbN79+7o3r37f84TEhICf3//QqqIirqFCxfC2dnZ0GVQHg4ePIixY8catIaCHh88nkhfbty4ga5du2q0OTs7Y+HChQaqiMgweNx/OIwMXcCH4urVq9i2bRs6duxo6FKI8tW5c2c0btzY0GVQHlasWGHoEgp8fPB4In3Zs2cPLly4YOgyiIj0hiGLqASxt7eHvb29ocugIqqgxwePJyIioryxuyAAf39/LFiwAN999x0+/vhjuLm5oW/fvrh79644zy+//IIOHTrAw8MDbm5uaNu2LXbv3g0AOH36NHr06AEA6NGjh9iFz9/fHyEhIRrbio6OhrOzMx48eADgVXebFi1aIDIyEr6+vmjUqBGePXuGjIwMzJkzBwEBAahduza8vLzQu3dvXL169Z32VZv1hoSEoFevXti8eTNatmyJ2rVro23btvjjjz801nXhwgV069YNHh4eaNq0KVauXIlevXqJ+3z69Gk4Ozvj9OnTGsu92c1R233dsmULPvvsM9SpUwdt2rTByZMn4erqiujoaHGeR48eYeTIkfD19YW7uzt69uyJ2NjYtz4vISEh6N69O3799Vc0a9YMnp6e6NmzJ65duybOEx0dDVdXV/zyyy9o2LAhfH19cfPmTQDArl270KFDB3h6eqJhw4aYNGkSnj17prGNixcvok+fPvDy8kL9+vUxcuRIJCQkiNNTU1MxadIkfPzxx6hTpw6++OILnDx5UmMdx48fxxdffAFPT0/4+Phg4MCBuHXrljj93r17GDBgAOrVqwd3d3d8+eWX+P3338Xpb3bv6t69O8aPH49ly5ahadOmqFOnDrp06YJLly5pbPfIkSPo0KED3Nzc0LJlS+zcuRMtWrQoMl0aBEHAihUr8Omnn8LNzQ0tWrTA8uXLxXs8jh8/jq+++gp169ZFvXr1MGrUKDx+/FhcPjo6GnXq1MG5c+fQsWNH1KlTBy1btsShQ4dw+/Zt9OzZE+7u7mjRogV+++03jeWcnZ3x119/oX379nBzc0NgYCD27NkjzqPNedC9e3ecOXMGZ86c0ZhXm2PC2dkZkZGR4usTGRmZ53M0ceJENGzYEDk5ORrtYWFhqFevHl6+fJnr+Cjo8QS8/VxQv+cdOXIEgYGBqF27Nlq2bImtW7fmWTd9GHJycrB27VoEBgbCzc0NTZs2RUREBDIzM7Fw4ULxuH2zq9Q///yD8ePHw9fXF56enhg2bBiSk5M11n3gwAF06NABderUQcOGDTF9+nS8ePFCnJ7f5yzR++bv74/IyEiEh4ejXr168PT0xKhRo/D8+XMsW7YMfn5+qFu3LoYOHYqUlJQ815GYmIjQ0FA0adIEbm5u6NSpEw4ePKgxj7OzM9asWYOxY8fC09MTH3/8McLCwpCZmSnO87b3c9I/hqz/t2rVKty+fRszZszA9OnTERMTI94fsXbtWkyaNAnNmzfH0qVLERERAblcjtGjRyM+Ph61atXCpEmTAACTJk3C5MmTC7TtR48e4ffff8e8efMQGhqKMmXKYMyYMdi8eTP69++PqKgohIaG4saNGxg1atQ73Rys7XpjYmKwfPlyDBs2DD/88ANkMhmGDh0qfjDdunULvXr1AgDMnTsXQ4cOxbJly3D+/Pn3UtPWrVsREhICLy8vLFq0CC1btsSgQYM0vjA+ffoUXbp0wZUrVzBx4kTMmTMHKpUK3bp10wgi+bl69SrmzZuHIUOGYPbs2UhJSUFQUBASExPFeXJychAVFYWwsDCEhobCyckJixYtwsiRI+Hh4YEFCxZg8ODB2Lt3L7p3746MjAwAQGxsLIKCgpCZmYlZs2ZhypQpiImJQd++fZGdnY3MzEz07NkTBw8exIgRIxAZGQl7e3v069dP/FJ9//59DBo0CLVr18bixYsRFhaGO3fuoH///lCpVFCpVAgODkZ6ejpmzZqFRYsWoWzZshg4cCDi4uLy3e+9e/fi4MGDmDBhAubOnYvk5GQMHTpUfG5PnTqFQYMGoUKFCli4cCG6deuGyZMna4QUQ5s1axZmzZoFf39/LFmyBJ06dUJERASWLVuGrVu3ok+fPqhQoQLmzp2L0NBQXLhwAV9++SWePHkiriM7OxujRo1Cly5dsHjxYpiZmWH06NEYMGAAmjZtiiVLlsDW1hZjx45FfHy8xvaDg4PxySefIDIyEo6Ojhg+fHiBPrwmT54MV1dXuLq6YuPGjahVq5ZWx4TakiVLEBgYiAULFqBly5Z5bqNt27ZITk7WCHsqlQq7d+/G559/DmNjY435dTmetDkXACApKQlTp05Fjx49sGzZMlSuXBljx47V6jyl4mnSpEmYMWMGmjdvjsWLF6Nbt25Ys2YNBg0ahE6dOqFTp04AgI0bN6Jz587icqtWrcLLly/x/fffY9SoUTh06BCmTp0qTt+xYwcGDx6MatWq4YcffsCQIUOwfft2DBo0SOMzLa/PWaLCEBUVhcePH2PevHkYOHAgdu7ciY4dO+LYsWOYNm0aRo4ciYMHD2LBggW5lk1OTkanTp1w7tw5jBgxAgsXLkSlSpUwePBgbN++XWPe77//Hk+ePMH8+fPRr18/bNy4Ufweq+v3A3pHAgnNmjUTmjVrJmRnZ4ttCxcuFBQKhfD06VNhxowZwuzZszWWiYmJERQKhbBz505BEATh1KlTgkKhEE6dOqWx3rFjx2ost3nzZkGhUAj3798XBEEQFixYICgUCuHs2bPiPJmZmUKfPn2E3377TWPZqKgoQaFQCImJiYIgCEJQUJAQFBT0n/s2duxYoVmzZgVa79ixYwWFQiHExcWJ85w5c0ZQKBTCnj17BEEQhG+++UZo2LCh8OLFC3GeP//8U1AoFOI+5/WcvFm3tjU1bdpUCA4O1phn6dKlgkKhEDZv3iwIgiDMnTtXqFOnjvDgwQON5/KTTz4Rhg4d+tbn6c3XISEhQahTp4742qtfu61bt4rzpKamCrVr1xYmTpyosb6zZ88KCoVCWLNmjSAIgjB06FChYcOGQkZGhsbz1axZMyE2NlbYuHGjoFAohIsXL4rTVSqV0K1bN6FDhw6CIAjCzp07BYVCIcTHx4vz/PXXX8LcuXOFtLQ0ITExUVAoFML27dvF6UqlUggPDxeuX78uCMK/x5taUFCQ4O7uLqSlpYltW7ZsERQKhXD58mVBEAThq6++Etq0aSOoVCpxHnUtCxYs+M/ntTA8e/ZMcHV1FcLCwjTap02bJvTt21do2LCh0KdPH41pcXFxQq1atYTvvvtOEIR/X9t169aJ8/z222+CQqEQ5s+fL7ZdvnxZUCgUwv79+zWWi4yMFOdRqVRC27Zthc6dOwuCoN15kNdjbY4JQRAEhUIh9OzZ863Pk0qlEpo1ayaEhoaKbSdOnNDYxuvHR0GPJ23PBfUyJ06cEOd5+PChoFAohOXLl791P6j4uXHjhqBQKISlS5dqtG/dulVQKBTCkSNHcr03CcKrY1t9HqmNHj1a8PHxEQTh1THt5+cn9O3bV2Me9XF9+PBhQRDy/pwlKgzNmjUTGjduLLx8+VJsa9WqleDp6SkolUqxLTg4WGjTpo0gCILGZ+usWbOEWrVqaXyvEQRB6Nmzp9CwYUMhJydHXCYgIEBjOz///LOgUCiEmzdvavV+TvrHK1n/r06dOpDJZOJj9X0G6enpCAkJwejRo6FUKnHx4kVs27YNa9euBQBkZWXpZfs1a9YU/y2Xy7F8+XJ89tlnSEhIwKlTp7BhwwYcPnw4322qVCpkZ2eL/73ZJaig67W2toaDg4P4+PXnA3h1dcPPzw9mZmbiPJ6enqhUqVKB9lubmuLi4vDo0SO0atVKY9nPP/9c4/HJkydRs2ZN2NnZic+DVCqFn58fTpw4AeDVlaj8nqfKlSvD29tbfGxrawtPT0+cPXtWYzuvv1YXL15EVlYWWrdurTGPt7c3KlWqhDNnzgAAzp8/Dz8/P5iYmGg8X4cOHULNmjVx8uRJlC9fHrVq1dKorVmzZoiJicGzZ8/g7u4OExMTdOrUCWFhYTh69ChcXFwwYsQIlC5dGuXKlUP16tUxceJEjB07Fjt27IBKpUJoaChq1KiR72tQvXp1lC5dWnxsZ2cH4NVrnZWVhQsXLiAgIAASiUScp1WrVjAyKhq3dF68eBHZ2dkICAjQaJ8wYQJCQ0ORlJSU6/VxcHCAp6en+PqoeXp6iv+2sbEBALi7u4ttZcuWBfBqNNHXtW/fXvy3RCJBixYtcOnSJY2rNwWlzTGh9voxCUDjGM/OzoZKpYJEIkGbNm1w4MAB8Vz/7bffULVqVY19VCvo8aTtuaDm4eEh/lv9/vJ6Fy/6cKhf+zffsz///HPIZLJcXWlfV7duXY3HlStXFs+/27dvIz4+Hv7+/hrHu4+PD0qXLo3jx49rLPvmeUJUGNzc3DQ+L8uVKwdHR0dYWFiIbWXLlkVaWlquZc+cOZPnd6s2bdogKSkJt2/fFtsCAwM1tqPu1XD27Fmdvx/Quyka35KKgNfDAgBIpa/yp0qlwr179zBp0iScPHkSxsbGqFatGlxcXADo73c9SpUqpfH46NGjCA8Px+3bt1GqVCm4uLjA3Nw8322OGzcOW7ZsER9XqlQJhw4dyjWftut98/lQf8FWqVQAXnXNU38JfV25cuW02t+C1PT06VMAyLW9N7eVmpqKuLg41KpVK8/tpKeno3///hpf9nx9fbF69WoA/4aL19nY2ODKlSsaberaAIhfdPPa73LlyolvmqmpqXk+X6/XnpSUlG/tSUlJqF69OtasWYNly5bh119/xapVq2BpaYmvvvoKw4cPh0QiQVRUFBYvXoz9+/dj69atMDY2RvPmzTFlypR8u8f817GfmpqKnJycXLXLZDIxcBhaamoqgFd/GMhvWn6vz5v3670eNtXefH7yYmtrq/HYxsYGgiDkCmMFoc0xoX5NXz8mAeRaZsiQIRg6dCjatm2LxYsX4+jRo2jcuDH27duHnj175rn+gh5P2p4Laq8/r+pjTl/vp1S0qI+N8uXLa7QbGRnBysoKaWlp+Z5nbx7bUqlUPE7U5/eUKVMwZcqUXMu+3tUbyP05S1QY8vpcefO4zs+zZ89QpUqVXO3q99nXP2Pe/A6j/tx+9uyZzt8P6N0wZL2FIAjo378/jI2N8euvv6JmzZowMjLCzZs3sW3btrcu/+YVJW3+Unvv3j0MHjxYvAesSpUqkEgkWLt2LY4ePZrnMkOGDEG3bt3Ex3K5XC/rzY+9vX2um48B4MmTJ6hWrRqA3MFM7fnz5+KHnTY1qf/K/fr9M3k9trCwgK+vL8aMGZNnzXK5HFOmTMHz58/Fttc/dPO66TQ5Ofk/w5H6jSk5OVncb7WkpCTxzdHCwkIMi6/7/fffUbNmTVhYWKBq1aqIiIjIczuVK1cGAHFgg6ysLJw/fx4bN27EkiVL4OLigk8//RR2dnb49ttvMXnyZFy7dg179uzBjz/+CCsrqwLfKwi8epM2NjbO9VqrA1hRYGlpCeBV8H/9NXj06BH+/vtvAMjzWE1KSoKVlZVeakhNTdUIF8nJyWIQ1eY8yIu2x0Refv31V43H6hDo6OgINzc37N69G1KpFEqlEm3atMl3PQU5nrQ9F6jkUR8bSUlJGn+Rf/nyJVJSUnQ+D9Xn/pgxY+Dr65vvdomKqzJlyiApKSlXu7rt9XPnze8w6s899R8g9f39gN6O3QXfIiUlBXfu3EGnTp1Qp04d8VKseqQ99Ren17saqpUuXTrXDfLaDAwRExODzMxM9O/fHw4ODuKXNHXoyOuvvZUrV0adOnXE//L6gVBd1psfHx8fHD16VGPkmtjYWHHURODfv968/hw8e/ZM4+Z2bWqyt7eHg4MD9u/fr1HDvn37NB77+vrizp07cHR01Hgutm3bhl9//RUymQzVqlXTmPb6l8G7d+9q1JaQkIALFy6gQYMG+T4P7u7ukMvl2Llzp0b7uXPn8OjRI3h5eQF41WXq+PHjGl0yY2Nj0b9/f1y5cgW+vr54/PgxbGxsNOo7fvw4fvrpJ8hkMqxYsQLNmjVDVlYW5HI5GjRogGnTpgF4FSguXLiAjz/+GJcuXYJEIkHNmjUxYsQIKBQKPHr0KN99+C8ymQxeXl65RjI6dOgQsrOzdVqnvrm5ucHY2FjsYqoWFRWFBQsWoHz58rlen/v37+PixYvi6/OuDhw4IP5bEATs27cPdevWhVwu1+o8AP69mqOmzTGRn9fnr1OnjsZfONu2bYujR4/it99+g5eXV77hp6DHk7bnApU86gD0+sic6sc5OTmoW7duruNfG9WqVYONjQ0ePHiQ63ifM2eOViPLEhVlPj4+uHDhAh4+fKjRvn37dpQvXx4fffSR2PZm76W9e/dCIpGgfv367+X7Ab0dr2S9hbW1NSpVqoS1a9fC3t4elpaWOHr0KFatWgXg33uU1H1rjxw5gjJlysDFxQXNmjXD0qVLsXTpUri7u+PQoUM4derUW7dZq1YtGBkZYfbs2ejTpw+ysrIQHR2NI0eOAND9vgV9rnfAgAHYtWsX+vXrhz59+kCpVOL777+HVCoVg5KzszMqVKiAH374AaVLl4ZEIsHSpUs1uoVoU5NEIsGwYcMwevRoTJ48GS1atMC1a9fwww8/APj3y2mvXr2wbds29OrVC3369IGVlRV27dqFTZs2ITQ09K37JAgCBgwYgBEjRkAmkyEyMhJlypTRGG7+TWXLlkX//v3xww8/wNjYGM2aNcODBw/w/fffo3r16uK9OoMGDcKXX36J4OBg9OjRAxkZGZg/fz7c3NzQsGFDZGdnY82aNejduzcGDBiAChUq4MSJE/jxxx8RFBQEY2Nj1K9fHxERERg8eDCCgoIgk8mwYcMGyOVyNGvWDJUqVYKpqSnGjBmDoUOHoly5cjhx4gSuXr0q/sSALoYNG4bu3btj2LBh6NSpEx49eoTvv/8eADTu0zIUa2tr9OjRAytWrIBcLoevry/++usvrF+/HmPGjIGFhQVCQ0MxatQotGnTBikpKeJr27t3b73UMGvWLGRmZsLR0RG//PILbt26hZUrVwLQ7jwAXv1V/sKFC+JPE3To0OGtx4QuPvvsM8ycORO7du36z79eurq6Fuh40vZcoJJH/fovWLAA6enp8PHxwdWrVxEZGYl69eqhcePGuHfvHgBg586dcHd31+rKp0wmw4gRIzBp0iTIZDI0a9YMSqUSixYtQkJCQr5dbYmKi969e2P79u3o1asXhgwZgrJly2Lr1q04deoUwsPDNf44cfHiRYwePRpt27bFtWvXsHDhQnzxxReoUqUKbG1t38v3A/pvDFlaWLRoEcLCwhASEgK5XI7q1atj8eLFCA8Px7lz59C9e3fUqFEDrVu3Fru57dy5E8HBwXj69CmWL1+Oly9fomnTpggLC8PAgQP/c3sfffQR5syZg8jISAwcOBBlypSBh4cHVq9eje7du+PcuXN5Xql6G32u96OPPsLy5csxa9YsDBs2DDY2NggODsbixYvFLlAymQwLFixAeHg4Ro4ciXLlyqFnz564ffs27ty5U6CaAgMD8eLFCyxfvhybN29GjRo1MH78eIwfP17s22xnZ4cNGzZgzpw5+Pbbb5GZmYmqVasiLCxMHB74v1SsWBF9+vRBeHg40tPT8fHHH2Px4sVvvfdI/Ya1Zs0abNy4EWXLlkWrVq0wfPhwsTZXV1esXr0ac+bMwfDhw1G6dGk0adIEo0ePhlwuh1wux9q1azFnzhzMnj0baWlpqFSpEkaNGoU+ffoAAFxcXLBkyRL88MMPGDlyJHJyclC7dm1ERUWJV+SioqIwZ84chIWFQalUomrVqpg6dSo6dOig1euaF29vbyxcuBDff/89Bg0ahEqVKmHixIkYMWJEkbnH4ZtvvoGNjQ02bNiAn376CZUrV8bEiRPRpUsXAK+6hS5duhSDBw9G6dKl0bhxY4wcOTLXPSK6+vbbb7F06VLcv38frq6uiIqKEgdR0eY8AIBu3bohJiYGX3/9NWbMmIHAwMC3HhO6sLa2RqNGjXD8+PFcg8m8zsTEpMDHkzbnApVMYWFh+Oijj7B582b8+OOPsLW1RY8ePTBo0CBIpVIEBARg27ZtCAkJQadOnfDtt99qtd7OnTujVKlS+Omnn7Bx40aYm5vDy8sLERER7KJKxV758uWxfv16zJkzB9OnT8fLly/h4uKCRYsW4ZNPPtGYt2fPnkhISMCQIUNgZWWFAQMGIDg4GIBu7+f07iQC7zQmHagHAXl9ND6lUomPP/4YY8aM0ftfRnbu3AlXV1eN7n1HjhxBcHAwtm3bJg5EoquQkBCcOXMmz8FCSrqDBw/C3t5e46/CN27cQOvWrfN8oy9JoqOjERoaioMHD/7nPVJERETvi7OzszjAERUdvJJFOrly5QoWLFiAkSNHolatWkhNTcXPP/8MCwuLXEM468P27dsxb948DB8+HBUqVEBcXBwWLFgAX1/fdw5Y9N+OHTuGXbt2YfTo0XB0dERCQgIWL16MatWqoVGjRoYuj4iIiKjIYcginajvn1q/fj0eP34Mc3Nz+Pr6YsaMGXkOpf2uvvvuO7Hb1NOnT1GuXDm0atUKw4YN0/u2SNPYsWNhamqKxYsXIzExEWXLlkXjxo0xatQojd/9IiIiIqJX2F2QiIiIiIhIjziEOxERERERkR4xZBEREREREekRQxYREREREZEeMWQRERERERHpEUMWERERERGRHjFkERERERER6RFDFhERERERkR4xZBEREREREenR/wFyXvZmb5uXgwAAAABJRU5ErkJggg==",
"text/plain": [
"