-
Notifications
You must be signed in to change notification settings - Fork 0
/
line_to_nearest.py
238 lines (203 loc) · 9.38 KB
/
line_to_nearest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding: utf-8 -*-
"""
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
from qgis.PyQt.QtCore import QCoreApplication, QVariant
from qgis.core import (QgsProcessing,
QgsFeatureSink,
QgsField,
QgsFields,
QgsFeature,
QgsWkbTypes,
QgsDistanceArea,
QgsProcessingException,
QgsProcessingAlgorithm,
QgsProcessingParameterFeatureSource,
QgsProcessingParameterFeatureSink,
QgsProcessingUtils,
QgsFeatureRequest)
from qgis import processing
class LineToNearestAlgorithm(QgsProcessingAlgorithm):
"""
This is an example algorithm that takes a vector layer and
creates a new identical one.
It is meant to be used as an example of how to create your own
algorithms and explain methods and variables used to do it. An
algorithm like this will be available in all elements, and there
is not need for additional work.
All Processing algorithms should extend the QgsProcessingAlgorithm
class.
"""
# Constants used to refer to parameters and outputs. They will be
# used when calling the algorithm from another algorithm, or when
# calling from the QGIS console.
INPUT = 'INPUT'
NEAREST = 'NEAREST'
OUTPUT = 'OUTPUT'
def tr(self, string):
"""
Returns a translatable string with the self.tr() function.
"""
return QCoreApplication.translate('Processing', string)
def createInstance(self):
return LineToNearestAlgorithm()
def name(self):
"""
Returns the algorithm name, used for identifying the algorithm. This
string should be fixed for the algorithm, and must not be localised.
The name should be unique within each provider. Names should contain
lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'linetonearest'
def displayName(self):
"""
Returns the translated algorithm name, which should be used for any
user-visible display of the algorithm name.
"""
return self.tr('Create line to nearest feature')
def group(self):
"""
Returns the name of the group this algorithm belongs to. This string
should be localised.
"""
return self.tr('Emmas tools')
def groupId(self):
"""
Returns the unique ID of the group this algorithm belongs to. This
string should be fixed for the algorithm, and must not be localised.
The group id should be unique within each provider. Group id should
contain lowercase alphanumeric characters only and no spaces or other
formatting characters.
"""
return 'emma'
def shortHelpString(self):
"""
Returns a localised short helper string for the algorithm. This string
should provide a basic description about what the algorithm does and the
parameters and outputs associated with it..
"""
return self.tr("Creates a line to the nearest feature")
def initAlgorithm(self, config=None):
"""
Here we define the inputs and output of the algorithm, along
with some other properties.
"""
# We add the input vector features source. It can have any kind of
# geometry.
self.addParameter(
QgsProcessingParameterFeatureSource(
self.INPUT,
self.tr('Input layer'),
[QgsProcessing.TypeVectorAnyGeometry]
)
)
self.addParameter(
QgsProcessingParameterFeatureSource(
self.NEAREST,
'Join to nearest feature in',
[QgsProcessing.TypeVectorAnyGeometry]
)
)
# We add a feature sink in which to store our processed features (this
# usually takes the form of a newly created vector layer when the
# algorithm is run in QGIS).
self.addParameter(
QgsProcessingParameterFeatureSink(
self.OUTPUT,
self.tr('Output layer')
)
)
def processAlgorithm(self, parameters, context, feedback):
"""
Here is where the processing itself takes place.
"""
# Retrieve the feature source and sink. The 'dest_id' variable is used
# to uniquely identify the feature sink, and must be included in the
# dictionary returned by the processAlgorithm function.
source = self.parameterAsSource(
parameters,
self.INPUT,
context
)
nearest_source = self.parameterAsSource(
parameters,
self.NEAREST,
context
)
# If source was not found, throw an exception to indicate that the algorithm
# encountered a fatal error. The exception text can be any string, but in this
# case we use the pre-built invalidSourceError method to return a standard
# helper text for when a source cannot be evaluated
if source is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))
if nearest_source is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.NEAREST))
output_fields = QgsProcessingUtils.combineFields(source.fields(), nearest_source.fields(), 'nearest_')
output_fields.append(QgsField('distance', QVariant.Double))
# create an empty layer for the results to go into
(sink, dest_id) = self.parameterAsSink(
parameters,
self.OUTPUT,
context,
output_fields,
QgsWkbTypes.LineString,
source.sourceCrs()
)
# If sink was not created, throw an exception to indicate that the algorithm
# encountered a fatal error. The exception text can be any string, but in this
# case we use the pre-built invalidSinkError method to return a standard
# helper text for when a sink cannot be evaluated
if sink is None:
raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
# Compute the number of steps to display within the progress bar and
# get features from source
total = 100.0 / source.featureCount() if source.featureCount() else 0
features = source.getFeatures()
da = QgsDistanceArea()
da.setEllipsoid(context.project().ellipsoid())
da.setSourceCrs(source.sourceCrs(), context.transformContext())
for current, feature in enumerate(features):
# Stop the algorithm if cancel button has been clicked
if feedback.isCanceled():
break
# feature is our polygon feature we need to join to something else
# find the nearest feature in the other layer
# create a line which joins ours polygon to the nearest feature
# (shortest line possible!)
shortest_line = None
shortest_line_length = 99999999999999
closest_feature = None
for candidate_feature in nearest_source.getFeatures(QgsFeatureRequest().setDestinationCrs(source.sourceCrs(), context.transformContext())):
line = feature.geometry().shortestLine(candidate_feature.geometry())
line_length =da.measureLength(line)
if line_length < shortest_line_length:
shortest_line = line
shortest_line_length = line_length
closest_feature = candidate_feature
# now shortest_line is the best one!
# create the output feature
output_feature = QgsFeature()
output_feature.setGeometry(shortest_line)
attrs = feature.attributes()
attrs.extend(closest_feature.attributes())
attrs.append(shortest_line_length)
output_feature.setAttributes(attrs)
# Add a feature in the sink
sink.addFeature(output_feature, QgsFeatureSink.FastInsert)
# Update the progress bar
feedback.setProgress(int(current * total))
# Return the results of the algorithm. In this case our only result is
# the feature sink which contains the processed features, but some
# algorithms may return multiple feature sinks, calculated numeric
# statistics, etc. These should all be included in the returned
# dictionary, with keys matching the feature corresponding parameter
# or output names.
return {self.OUTPUT: dest_id}