-
Notifications
You must be signed in to change notification settings - Fork 10
/
train_baseline.py
135 lines (111 loc) · 5.01 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
'''
Name: train_baseline.py
Desc: Executes training of the rgb -> target domain or mid domain -> target domain with the NLL loss.
Here are some options that may be specified for any model. If they have a
default value, it is given at the end of the description in parens.
Data pipeline:
Data locations:
'train_buildings': A list of the folders containing the training data. This
is defined in configs/split.txt.
'val_buildings': As above, but for validation data.
'data_dirs': The folder that all the data is stored in. This may just be
something like '/', and then all filenames in 'train_filenames' will
give paths relative to 'dataset_dir'. For example, if 'dataset_dir'='/',
then train_filenames might have entries like 'path/to/data/img_01.png'.
This is defiled in utils.py.
Logging:
'results_dir': An absolute path to where checkpoints are saved. This is
defined in utils.py.
Training:
'batch_size': The size of each batch. (64)
'max_epochs': The maximum number of epochs to train for. (800)
'energy_config': {multiperceptual_targettask} The paths taken to compute the losses.
'data_aug': {True, False} If data augmentation shuold be used during training.
See TrainTaskDataset class in datasets.py for the types of data augmentation
used. (False)
Optimization:
'learning_rate': The initial learning rate to use for the model. (5e-4)
Usage:
python -m train_baseline baseline_edge2depth --batch-size 64 --max-epochs 1000
'''
import torch
import torch.nn as nn
from utils import *
from energy_baseline import get_energy_loss
from graph import TaskGraph
from logger import Logger, VisdomLogger
from datasets import load_train_val, load_test, load_ood
from task_configs import tasks, RealityTask
from transfers import functional_transfers
from fire import Fire
import wandb
wandb.init(project="xdomain-ensembles", entity="robust_team")
def main(
loss_config="baseline_normal", mode="standard", visualize=False,
fast=False, batch_size=None, learning_rate=5e-4,
subset_size=None, max_epochs=5000, dataaug=False, **kwargs,
):
# CONFIG
wandb.config.update({"loss_config":loss_config,"batch_size":batch_size,"data_aug":dataaug,"lr":learning_rate})
batch_size = batch_size or (4 if fast else 64)
energy_loss = get_energy_loss(config=loss_config, mode=mode, **kwargs)
# DATA LOADING
train_dataset, val_dataset, train_step, val_step = load_train_val(
energy_loss.get_tasks("train"),
batch_size=batch_size, fast=fast,
subset_size=subset_size,
)
test_set = load_test(energy_loss.get_tasks("test"))
ood_set = load_ood(energy_loss.get_tasks("ood"))
train = RealityTask("train", train_dataset, batch_size=batch_size, shuffle=True)
val = RealityTask("val", val_dataset, batch_size=batch_size, shuffle=True)
test = RealityTask.from_static("test", test_set, energy_loss.get_tasks("test"))
ood = RealityTask.from_static("ood", ood_set, [tasks.rgb,])
# GRAPH
realities = [train, val, test, ood]
graph = TaskGraph(tasks=energy_loss.tasks + realities, pretrained=True, finetuned=False,
freeze_list=energy_loss.freeze_list,
)
graph.compile(torch.optim.Adam, lr=learning_rate, weight_decay=2e-6, amsgrad=True)
# LOGGING
logger = VisdomLogger("train", env=JOB) # fake visdom logger
logger.add_hook(lambda logger, data: logger.step(), feature="loss", freq=20)
energy_loss.logger_hooks(logger)
# TRAINING
for epochs in range(0, max_epochs):
logger.update("epoch", epochs)
if (epochs % 100 == 0) or (epochs % 10 == 0 and epochs < 30):
path_values = energy_loss.plot_paths(graph, logger, realities, prefix="")
for reality_paths, reality_images in path_values.items():
wandb.log({reality_paths: [wandb.Image(reality_images)]}, step=epochs)
graph.train()
for _ in range(0, train_step):
train_loss = energy_loss(graph, realities=[train], compute_grad_ratio=True)
train_loss = sum([train_loss[loss_name] for loss_name in train_loss])
graph.step(train_loss)
train.step()
logger.update("loss", train_loss)
graph.eval()
for _ in range(0, val_step):
with torch.no_grad():
val_loss = energy_loss(graph, realities=[val])
val_loss = sum([val_loss[loss_name] for loss_name in val_loss])
val.step()
logger.update("loss", val_loss)
energy_loss.logger_update(logger)
data=logger.step()
del data['loss']
del data['epoch']
data = {k:v[0] for k,v in data.items()}
wandb.log(data, step=epochs)
# save model and opt state every 10 epochs
if epochs % 10 == 0:
graph.save(f"{RESULTS_DIR}/graph.pth")
torch.save(graph.optimizer.state_dict(),f"{RESULTS_DIR}/opt.pth")
# lower lr after 1500 epochs
if epochs == 1500:
graph.optimizer.param_groups[0]['lr']=3e-5
graph.save(f"{RESULTS_DIR}/graph.pth")
torch.save(graph.optimizer.state_dict(),f"{RESULTS_DIR}/opt.pth")
if __name__ == "__main__":
Fire(main)