-
Notifications
You must be signed in to change notification settings - Fork 0
/
error_pre_copy.py
190 lines (159 loc) · 7.27 KB
/
error_pre_copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2016 Stanford University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import random
import json
import numpy as np
from six.moves import xrange
import tensorflow as tf
import nlc_model_global_pre_copy as nlc_model
import nlc_data
from util import pair_iter
from util import get_tokenizer
import logging
logging.basicConfig(level=logging.INFO)
tf.app.flags.DEFINE_float("learning_rate", 0.0000001, "Learning rate.")
tf.app.flags.DEFINE_float("learning_rate_decay_factor", 0.95, "Learning rate decays by this much.")
tf.app.flags.DEFINE_float("max_gradient_norm", 10.0, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("dropout", 0.15, "Fraction of units randomly dropped on non-recurrent connections.")
tf.app.flags.DEFINE_integer("batch_size", 128, "Batch size to use during training.")
tf.app.flags.DEFINE_integer("epochs", 40, "Number of epochs to train.")
tf.app.flags.DEFINE_integer("size", 400, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 3, "Number of layers in the model.")
tf.app.flags.DEFINE_integer("max_vocab_size", 40000, "Vocabulary size limit.")
#tf.app.flags.DEFINE_integer("max_seq_len", 200, "Maximum sequence length.")
tf.app.flags.DEFINE_integer("max_seq_len", 100, "Maximum sequence length.")
tf.app.flags.DEFINE_string("data_dir", "/tmp", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "/tmp", "Training directory.")
tf.app.flags.DEFINE_string("tokenizer", "CHAR", "BPE / CHAR / WORD.")
tf.app.flags.DEFINE_string("optimizer", "adam", "adam / sgd")
tf.app.flags.DEFINE_integer("print_every", 1, "How many iterations to do per print.")
FLAGS = tf.app.flags.FLAGS
def create_model(session, vocab_size, forward_only):
model = nlc_model.NLCModel(
vocab_size, FLAGS.size, FLAGS.num_layers, FLAGS.max_gradient_norm, FLAGS.batch_size,
FLAGS.learning_rate, FLAGS.learning_rate_decay_factor, FLAGS.dropout,
forward_only=forward_only, optimizer=FLAGS.optimizer)
ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir)
num_epoch = 0
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
logging.info("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
num_epoch = int(ckpt.model_checkpoint_path.split('-')[1])
print (num_epoch)
else:
logging.info("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
logging.info('Num params: %d' % sum(v.get_shape().num_elements() for v in tf.trainable_variables()))
return model, num_epoch
def validate(model, sess, x_dev, y_dev):
valid_costs, valid_lengths = [], []
for source_tokens, source_mask, target_tokens, target_mask in pair_iter(x_dev, y_dev, FLAGS.batch_size, FLAGS.num_layers):
cost = model.test(sess, source_tokens, source_mask, target_tokens, target_mask)
valid_costs.append(cost * target_mask.shape[1])
valid_lengths.append(np.sum(target_mask[1:, :]))
valid_cost = sum(valid_costs) / float(sum(valid_lengths))
return valid_cost
def train():
"""Train a translation model using NLC data."""
# Prepare NLC data.
logging.info("Preparing NLC data in %s" % FLAGS.data_dir)
x_train, y_train, x_dev, y_dev, vocab_path = nlc_data.prepare_nlc_data(
FLAGS.data_dir, FLAGS.max_vocab_size,
tokenizer=get_tokenizer(FLAGS))
vocab, _ = nlc_data.initialize_vocabulary(vocab_path)
vocab_size = len(vocab)
logging.info("Vocabulary size: %d" % vocab_size)
FLAGS.print_every=100
if not os.path.exists(FLAGS.train_dir):
os.makedirs(FLAGS.train_dir)
file_handler = logging.FileHandler("{0}/log.txt".format(FLAGS.train_dir))
logging.getLogger().addHandler(file_handler)
print(vars(FLAGS))
with open(os.path.join(FLAGS.train_dir, "flags.json"), 'w') as fout:
json.dump(FLAGS.__flags, fout)
FLAGS.print_every=1
with tf.Session() as sess:
logging.info("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.size))
model, epoch = create_model(sess, vocab_size, False)
#logging.info('Initial validation cost: %f' % validate(model, sess, x_dev, y_dev))
if False:
tic = time.time()
params = tf.trainable_variables()
num_params = sum(map(lambda t: np.prod(tf.shape(t.value()).eval()), params))
toc = time.time()
print ("Number of params: %d (retreival took %f secs)" % (num_params, toc - tic))
#epoch = 0
best_epoch = 0
previous_losses = []
exp_cost = None
exp_length = None
exp_norm = None
total_iters = 0
start_time = time.time()
while (FLAGS.epochs == 0 or epoch < FLAGS.epochs):
epoch += 1
print(epoch)
current_step = 0
## Train
epoch_tic = time.time()
for source_tokens, source_mask, target_tokens, target_mask in pair_iter(x_train, y_train, FLAGS.batch_size, FLAGS.num_layers):
# Get a batch and make a step.
tic = time.time()
grad_norm, cost, param_norm, pre = model.train(sess, source_tokens, source_mask, target_tokens, target_mask)
if np.isnan(grad_norm) or np.isinf(grad_norm):
np.savetxt(os.path.join(FLAGS.train_dir, 'pre'), pre, fmt='%.5f')
#np.savetxt(os.path.join(FLAGS.train_dir,'prob1'), prob1)
#np.savetxt(os.path.join(FLAGS.train_dir,'prob2'), prob2)
break
toc = time.time()
iter_time = toc - tic
total_iters += np.sum(target_mask)
tps = total_iters / (time.time() - start_time)
current_step += 1
lengths = np.sum(target_mask, axis=0)
mean_length = np.mean(lengths)
std_length = np.std(lengths)
if not exp_cost:
exp_cost = cost
exp_length = mean_length
exp_norm = grad_norm
else:
exp_cost = 0.99*exp_cost + 0.01*cost
exp_length = 0.99*exp_length + 0.01*mean_length
exp_norm = 0.99*exp_norm + 0.01*grad_norm
cost = cost / mean_length
if current_step % FLAGS.print_every == 0:
logging.info('epoch %d, iter %d, cost %f, exp_cost %f, grad norm %f, param norm %f, tps %f, length mean/std %f/%f' %
(epoch, current_step, cost, exp_cost / exp_length, grad_norm, param_norm, tps, mean_length, std_length))
epoch_toc = time.time()
## Checkpoint
checkpoint_path = os.path.join(FLAGS.train_dir, "best.ckpt")
## Validate
valid_cost = validate(model, sess, x_dev, y_dev)
logging.info("Epoch %d Validation cost: %f time: %f" % (epoch, valid_cost, epoch_toc - epoch_tic))
model.saver.save(sess, checkpoint_path, global_step=epoch)
sys.stdout.flush()
def main(_):
train()
if __name__ == "__main__":
tf.app.run()