-
Notifications
You must be signed in to change notification settings - Fork 0
/
dax_converter.py
251 lines (203 loc) · 7.32 KB
/
dax_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import hashlib
import sys
import numpy
import os
import re
import glob
import numpy as np
import tifffile
import argparse
from pathlib import Path
class Reader(object):
"""
The superclass containing those functions that
are common to reading a STORM movie file.
Subclasses should implement:
1. __init__(self, filename, verbose = False)
This function should open the file and extract the
various key bits of meta-data such as the size in XY
and the length of the movie.
2. loadAFrame(self, frame_number)
Load the requested frame and return it as numpy array.
"""
def __init__(self, filename, verbose=False):
super(Reader, self).__init__()
self.filename = filename
self.fileptr = None
self.verbose = verbose
def __del__(self):
self.close()
def __enter__(self):
return self
def __exit__(self, etype, value, traceback):
self.close()
def averageFrames(self, start=None, end=None):
"""
Average multiple frames in a movie.
"""
length = 0
average = numpy.zeros((self.image_height, self.image_width), numpy.float)
for [i, frame] in self.frameIterator(start, end):
if self.verbose and ((i % 10) == 0):
print(" processing frame:", i, " of", self.number_frames)
length += 1
average += frame
if (length > 0):
average = average / float(length)
return average
def close(self):
if self.fileptr is not None:
self.fileptr.close()
self.fileptr = None
def filmFilename(self):
"""
Returns the film name.
"""
return self.filename
def filmSize(self):
"""
Returns the film size.
"""
return [self.image_width, self.image_height, self.number_frames]
def filmLocation(self):
"""
Returns the picture x,y location, if available.
"""
if hasattr(self, "stage_x"):
return [self.stage_x, self.stage_y]
else:
return [0.0, 0.0]
def filmScale(self):
"""
Returns the scale used to display the film when
the picture was taken.
"""
if hasattr(self, "scalemin") and hasattr(self, "scalemax"):
return [self.scalemin, self.scalemax]
else:
return [100, 2000]
def frameIterator(self, start=None, end=None):
"""
Iterator for going through the frames of a movie.
"""
if start is None:
start = 0
if end is None:
end = self.number_frames
for i in range(start, end):
yield [i, self.loadAFrame(i)]
def hashID(self):
"""
A (hopefully) unique string that identifies this movie.
"""
return hashlib.md5(self.loadAFrame(0).tobytes()).hexdigest()
def loadAFrame(self, frame_number):
assert frame_number >= 0, "Frame_number must be greater than or equal to 0, it is " + str(frame_number)
assert frame_number < self.number_frames, "Frame number must be less than " + str(self.number_frames)
def lockTarget(self):
"""
Returns the film focus lock target.
"""
if hasattr(self, "lock_target"):
return self.lock_target
else:
return 0.0
class DaxReader(Reader):
"""
Dax reader class. This is a Zhuang lab custom format.
"""
def __init__(self, filename, verbose=False):
super(DaxReader, self).__init__(filename, verbose=verbose)
# save the filenames
dirname = os.path.dirname(filename)
if (len(dirname) > 0):
dirname = dirname + "/"
self.inf_filename = dirname + os.path.splitext(os.path.basename(filename))[0] + ".inf"
# defaults
self.image_height = None
self.image_width = None
# extract the movie information from the associated inf file
size_re = re.compile(r'frame dimensions = ([\d]+) x ([\d]+)')
length_re = re.compile(r'number of frames = ([\d]+)')
endian_re = re.compile(r' (big|little) endian')
stagex_re = re.compile(r'Stage X = ([\d\.\-]+)')
stagey_re = re.compile(r'Stage Y = ([\d\.\-]+)')
lock_target_re = re.compile(r'Lock Target = ([\d\.\-]+)')
scalemax_re = re.compile(r'scalemax = ([\d\.\-]+)')
scalemin_re = re.compile(r'scalemin = ([\d\.\-]+)')
inf_file = open(self.inf_filename, "r")
while 1:
line = inf_file.readline()
if not line: break
m = size_re.match(line)
if m:
self.image_height = int(m.group(2))
self.image_width = int(m.group(1))
m = length_re.match(line)
if m:
self.number_frames = int(m.group(1))
m = endian_re.search(line)
if m:
if m.group(1) == "big":
self.bigendian = 1
else:
self.bigendian = 0
m = stagex_re.match(line)
if m:
self.stage_x = float(m.group(1))
m = stagey_re.match(line)
if m:
self.stage_y = float(m.group(1))
m = lock_target_re.match(line)
if m:
self.lock_target = float(m.group(1))
m = scalemax_re.match(line)
if m:
self.scalemax = int(m.group(1))
m = scalemin_re.match(line)
if m:
self.scalemin = int(m.group(1))
inf_file.close()
# set defaults, probably correct, but warn the user
# that they couldn't be determined from the inf file.
if not self.image_height:
print("Could not determine image size, assuming 256x256.")
self.image_height = 256
self.image_width = 256
# open the dax file
if os.path.exists(filename):
self.fileptr = open(filename, "rb")
else:
if self.verbose:
print("dax data not found", filename)
def loadAFrame(self, frame_number):
"""
Load a frame & return it as a numpy array.
"""
super(DaxReader, self).loadAFrame(frame_number)
self.fileptr.seek(frame_number * self.image_height * self.image_width * 2)
image_data = numpy.fromfile(self.fileptr, dtype='uint16', count=self.image_height * self.image_width)
image_data = numpy.reshape(image_data, [self.image_height, self.image_width])
if self.bigendian:
image_data.byteswap(True)
return image_data
parser = argparse.ArgumentParser()
parser.add_argument("input_path")
#parser.add_argument("output path")
args = parser.parse_args()
print(args.input_path)
if os.path.exists(args.input_path):
os.chdir(args.input_path)
else:
print("Cannot access target directory. Exiting...")
sys.exit()
for index, file in enumerate(glob.glob("*.dax"), start=1):
print(f"Converting file {index} of ")
daxfile = DaxReader(file, verbose=True)
frames_list = []
for frame in range(daxfile.number_frames):
frame_array = daxfile.loadAFrame(frame)
frames_list.append(frame_array)
frame_stack = np.stack(frames_list)
tiff_name = os.path.splitext(daxfile.filename)[0] + '.tif'
tifffile.imwrite(tiff_name, frame_stack)