forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mask_rcnn_r50_fpn_160e_icdar2017.py
69 lines (68 loc) · 2.33 KB
/
mask_rcnn_r50_fpn_160e_icdar2017.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
_base_ = [
'../../_base_/models/ocr_mask_rcnn_r50_fpn_ohem.py',
'../../_base_/schedules/schedule_160e.py', '../../_base_/runtime_10e.py'
]
dataset_type = 'IcdarDataset'
data_root = 'data/icdar2017/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# img_norm_cfg = dict(mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='ScaleAspectJitter',
img_scale=None,
keep_ratio=False,
resize_type='indep_sample_in_range',
scale_range=(640, 2560)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(
type='RandomCropInstances',
target_size=(640, 640),
mask_type='union_all',
instance_key='gt_masks'),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='MultiScaleFlipAug',
# resize the long size to 1600
img_scale=(1600, 1600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
# no flip
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type=dataset_type,
ann_file=data_root + '/instances_training.json',
img_prefix=data_root + '/imgs',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
# select_first_k=1,
ann_file=data_root + '/instances_val.json',
img_prefix=data_root + '/imgs',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
# select_first_k=1,
ann_file=data_root + '/instances_val.json',
img_prefix=data_root + '/imgs',
pipeline=test_pipeline))
evaluation = dict(interval=10, metric='hmean-iou')