-
Notifications
You must be signed in to change notification settings - Fork 4
/
pure_inferProgScript.sml
503 lines (428 loc) · 15.4 KB
/
pure_inferProgScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
(*
Translation of PureLang type inferencer
*)
open basis
pure_inferenceTheory
pure_parseProgTheory;
val _ = new_theory "pure_inferProg";
val _ = set_grammar_ancestry ["pure_parseProg", "pure_inference"];
val _ = translation_extends "pure_parseProg";
val _ = (max_print_depth := 1000);
(*-----------------------------------------------------------------------*
code for fetching definitions automatically
*-----------------------------------------------------------------------*)
val RW = REWRITE_RULE
val RW1 = ONCE_REWRITE_RULE
fun list_dest f tm =
let val (x,y) = f tm in list_dest f x @ list_dest f y end
handle HOL_ERR _ => [tm];
val dest_fun_type = dom_rng
val mk_fun_type = curry op -->;
fun list_mk_fun_type [ty] = ty
| list_mk_fun_type (ty1::tys) =
mk_fun_type ty1 (list_mk_fun_type tys)
| list_mk_fun_type _ = fail()
val _ = add_preferred_thy "-";
Theorem NOT_NIL_AND_LEMMA:
(b <> [] /\ x) = if b = [] then F else x
Proof
Cases_on `b` THEN FULL_SIMP_TAC std_ss []
QED
val extra_preprocessing = ref [MEMBER_INTRO,MAP];
fun def_of_const tm = let
val res = dest_thy_const tm handle HOL_ERR _ =>
failwith ("Unable to translate: " ^ term_to_string tm)
val name = (#Name res)
fun def_from_thy thy name =
DB.fetch thy (name ^ "_pmatch") handle HOL_ERR _ =>
DB.fetch thy (name ^ "_def") handle HOL_ERR _ =>
DB.fetch thy (name ^ "_DEF") handle HOL_ERR _ =>
DB.fetch thy name
val def = def_from_thy "termination" name handle HOL_ERR _ =>
def_from_thy (#Thy res) name handle HOL_ERR _ =>
failwith ("Unable to find definition of " ^ name)
val def = def |> RW (!extra_preprocessing)
|> CONV_RULE (DEPTH_CONV BETA_CONV)
|> SIMP_RULE bool_ss [IN_INSERT,NOT_IN_EMPTY]
|> REWRITE_RULE [NOT_NIL_AND_LEMMA]
in def end
val _ = (find_def_for_const := def_of_const);
Theorem monad_unitbind_assert:
!b x. OPTION_IGNORE_BIND (OPTION_GUARD b) x = if b then x else NONE
Proof
Cases THEN EVAL_TAC THEN SIMP_TAC std_ss []
QED
Theorem OPTION_BIND_THM:
!x y. OPTION_BIND x y = case x of NONE => NONE | SOME i => y i
Proof
Cases THEN SRW_TAC [] []
QED
val _ = (extra_preprocessing :=
[MEMBER_INTRO,MAP,OPTION_BIND_THM,monad_unitbind_assert]);
(*-----------------------------------------------------------------------*
infer
*-----------------------------------------------------------------------*)
Theorem LLOOKUP_INTRO:
∀ts v d. (if v < LENGTH ts then EL v ts else d) =
case LLOOKUP ts v of SOME x => x | NONE => d
Proof
Induct \\ fs [LLOOKUP_def]
\\ rw [] \\ fs []
\\ Cases_on ‘v’ \\ fs []
\\ metis_tac []
QED
val r = translate (def_of_const “isubst” |> RW [LLOOKUP_INTRO]);
val r = translate (pure_inferenceTheory.get_typedef_def
|> DefnBase.one_line_ify NONE |> RW [ADD1]);
val r = translate sptreeTheory.insert_def;
val r = translate sptreeTheory.union_def;
val r = translate sptreeTheory.lrnext_def;
val r = translate sptreeTheory.foldi_def;
val r = translate pure_inferenceTheory.infer_cons_def;
val r = translate pure_inference_commonTheory.itype_of_def;
val r = translate pure_inference_commonTheory.iFunctions_def;
val r = translate FOLDL;
val r = translate list_insert_def;
val r = translate pure_varsTheory.list_delete_def;
Theorem infer_bind_eq:
infer_bind g f =
λs. case g s of Err e => Err e | OK (x,s') => f x s'
Proof
fs [FUN_EQ_THM,infer_bind_def]
QED
Theorem infer_ignore_bind_eq:
infer_ignore_bind g f =
λs. case g s of Err e => Err e | OK (x,s') => f s'
Proof
fs [FUN_EQ_THM,infer_bind_def,infer_ignore_bind_def]
QED
val r = translate
(apply_foldr_def
|> SIMP_RULE std_ss [infer_bind_eq,infer_ignore_bind_eq]);
val r = translate
(pure_inferenceTheory.infer'_prim_def
|> SIMP_RULE std_ss [infer_bind_eq,infer_ignore_bind_eq]);
val r = translate
(pure_inferenceTheory.infer'_def
|> SIMP_RULE std_ss [infer_bind_eq,infer_ignore_bind_eq]);
val r = translate pure_inferencePropsTheory.infer'_infer;
val _ = (length (hyp r) = 0) orelse fail (); (* no side conditions *)
(*-----------------------------------------------------------------------*
pure_unify
*-----------------------------------------------------------------------*)
val _ = add_preferred_thy "-";
Triviality PRECONDITION_INTRO:
(b ==> (x = y)) ==> (x = if PRECONDITION b then y else x)
Proof
Cases_on `b` \\ SIMP_TAC std_ss [PRECONDITION_def]
QED
Triviality EXISTS_eq:
∀xs. EXISTS P xs ⇔ MEMBER T (MAP P xs)
Proof
fs [GSYM MEMBER_INTRO]
\\ Induct \\ fs []
QED
Theorem pure_vwalk_ind:
!P.
(!s v.
(!v1 u. FLOOKUP s v = SOME v1 /\ v1 = CVar u ==> P s u) ==>
P s v) ==>
(!s v. pure_wfs s ==> P s v)
Proof
NTAC 3 STRIP_TAC
\\ Cases_on `pure_wfs s` \\ FULL_SIMP_TAC std_ss []
\\ HO_MATCH_MP_TAC
(pure_unificationTheory.pure_vwalk_ind
|> SPEC_ALL |> UNDISCH
|> Q.SPEC `P (s:num |-> itype)`
|> DISCH_ALL |> RW [AND_IMP_INTRO] |> GEN_ALL)
\\ fs []
QED
val r = translate
(pure_unificationTheory.pure_vwalk
|> SIMP_RULE std_ss [PULL_FORALL] |> SPEC_ALL
|> MATCH_MP PRECONDITION_INTRO)
Theorem pure_vwalk_side_def[allow_rebind]:
∀s v. pure_vwalk_side s v ⇔ pure_wfs s
Proof
strip_tac \\ reverse $ Cases_on ‘pure_wfs s’ \\ fs []
>- simp [Once $ fetch "-" "pure_vwalk_side_def"]
\\ strip_tac
\\ first_assum mp_tac
\\ first_x_assum mp_tac
\\ qid_spec_tac ‘v’
\\ qid_spec_tac ‘s’
\\ ho_match_mp_tac pure_vwalk_ind
\\ rw [] \\ fs []
\\ simp [Once $ fetch "-" "pure_vwalk_side_def"]
QED
val _ = pure_vwalk_side_def |> update_precondition;
val r = translate pure_unificationTheory.pure_walk;
Theorem pure_walk_side[simp]:
∀s t. pure_wfs s ⇒ pure_walk_side s t
Proof
simp [Once $ fetch "-" "pure_walk_side_def"]
QED
Theorem pure_oc_ind:
∀P. (∀v13 v14 v15.
(∀x9 x8 x7 x6 x5 x4 x3.
(pure_walk v13 v14 = TypeCons x9 x8 ⇒
∀x1. MEM x1 x8 ⇒ P v13 x1 v15) ∧
(pure_walk v13 v14 = Tuple x7 ⇒ ∀x2. MEM x2 x7 ⇒ P v13 x2 v15) ∧
(pure_walk v13 v14 = Function x6 x5 ⇒
P v13 x6 v15 ∧ (¬pure_oc v13 x6 v15 ⇒ P v13 x5 v15)) ∧
(pure_walk v13 v14 = Array x4 ⇒ P v13 x4 v15) ∧
(pure_walk v13 v14 = M x3 ⇒ P v13 x3 v15)) ⇒
P v13 v14 v15) ⇒
∀s t v. pure_wfs s ⇒ P s t v
Proof
rpt strip_tac
\\ drule pure_unificationTheory.pure_walkstar_ind
\\ disch_then $ qspec_then ‘λx. ∀v. P s x v’ mp_tac
\\ simp []
QED
val r = translate
(pure_unificationTheory.pure_oc
|> SIMP_RULE std_ss [PULL_FORALL,EXISTS_eq,MAP,MEMBER_def]
|> SPEC_ALL
|> MATCH_MP PRECONDITION_INTRO)
Triviality pure_oc_side:
pure_oc_side s t v = pure_wfs s
Proof
reverse $ Cases_on ‘pure_wfs s’ \\ simp []
>- simp [Once $ fetch "-" "pure_oc_side_def"]
\\ first_assum mp_tac
\\ pop_assum mp_tac
\\ qid_spec_tac ‘v’
\\ qid_spec_tac ‘t’
\\ qid_spec_tac ‘s’
\\ ho_match_mp_tac pure_oc_ind
\\ rw []
\\ simp [Once $ fetch "-" "pure_oc_side_def"]
QED
val _ = pure_oc_side |> update_precondition;
val r = translate pure_unificationTheory.pure_ext_s_check;
Triviality pure_ext_s_check_side:
pure_ext_s_check_side s t v = pure_wfs s
Proof
rewrite_tac [fetch "-" "pure_ext_s_check_side_def"]
QED
val _ = pure_ext_s_check_side |> update_precondition;
Triviality pure_unify_lemma:
(pure_unify s t1 t2 =
if PRECONDITION (pure_wfs s) then
(case (pure_walk s t1,pure_walk s t2) of
(DBVar db1,DBVar db2) => if db1 = db2 then SOME s else NONE
| (DBVar db1,CVar v53) => pure_ext_s_check s v53 (DBVar db1)
| (PrimTy pty1,PrimTy pty2) => if pty1 = pty2 then SOME s else NONE
| (PrimTy pty1,CVar v73) => pure_ext_s_check s v73 (PrimTy pty1)
| (Exception,Exception) => SOME s
| (Exception,CVar v93) => pure_ext_s_check s v93 Exception
| (TypeCons c1 ts1,TypeCons c2 ts2) =>
if c1 = c2 then pure_unifyl s ts1 ts2 else NONE
| (TypeCons c1 ts1,CVar v113) =>
pure_ext_s_check s v113 (TypeCons c1 ts1)
| (Tuple ts1',Tuple ts2') => pure_unifyl s ts1' ts2'
| (Tuple ts1',CVar v133) => pure_ext_s_check s v133 (Tuple ts1')
| (Function t11 t12,Function t21 t22) =>
pure_unifyl s [t11; t12] [t21; t22]
| (Function t11 t12,CVar v153) =>
pure_ext_s_check s v153 (Function t11 t12)
| (Array t1,Array t2) => pure_unify s t1 t2
| (Array t1,CVar v173) => pure_ext_s_check s v173 (Array t1)
| (M t1',M t2') => pure_unify s t1' t2'
| (M t1',CVar v193) => pure_ext_s_check s v193 (M t1')
| (CVar v1,DBVar v214) => pure_ext_s_check s v1 (DBVar v214)
| (CVar v1,PrimTy v215) => pure_ext_s_check s v1 (PrimTy v215)
| (CVar v1,Exception) => pure_ext_s_check s v1 Exception
| (CVar v1,TypeCons v216 v217) =>
pure_ext_s_check s v1 (TypeCons v216 v217)
| (CVar v1,Tuple v218) => pure_ext_s_check s v1 (Tuple v218)
| (CVar v1,Function v219 v220) =>
pure_ext_s_check s v1 (Function v219 v220)
| (CVar v1,Array v221) => pure_ext_s_check s v1 (Array v221)
| (CVar v1,M v222) => pure_ext_s_check s v1 (M v222)
| (CVar v1,CVar v2) => SOME (if v1 = v2 then s else s |+ (v1,CVar v2))
| _ => NONE)
else pure_unify s t1 t2) ∧
(pure_unifyl s ts1 ts2 =
if PRECONDITION (pure_wfs s) then
case (ts1,ts2) of
| ([],[]) => SOME s
| (t1::ts1,t2::ts2) => (case pure_unify s t1 t2 of
| NONE => NONE
| SOME s' => pure_unifyl s' ts1 ts2)
| _ => NONE
else pure_unifyl s ts1 ts2)
Proof
Cases_on ‘pure_wfs s’ \\ fs [PRECONDITION_def] \\ conj_tac
>- (drule_then (qspecl_then [‘t1’,‘t2’] mp_tac) pure_unificationTheory.pure_unify
\\ strip_tac \\ gvs [AllCaseEqs()])
\\ Cases_on ‘ts1’ \\ Cases_on ‘ts2’ \\ fs []
\\ fs [pure_unificationTheory.pure_unifyl_def]
QED
val r = translate_no_ind pure_unify_lemma;
Triviality pure_unify_ind:
pure_unify_ind
Proof
rewrite_tac [fetch "-" "pure_unify_ind_def"]
\\ rpt gen_tac \\ strip_tac
\\ ho_match_mp_tac pure_unificationTheory.pure_unify_ind
\\ conj_tac
>-
(rpt strip_tac
\\ last_x_assum irule
\\ last_x_assum kall_tac
\\ fs [])
\\ last_x_assum kall_tac
\\ rw []
\\ Cases_on ‘ts1’ \\ fs []
\\ Cases_on ‘ts2’ \\ fs []
QED
val _ = pure_unify_ind |> update_precondition;
val pure_unify_ind_lemma =
pure_unify_ind |> REWRITE_RULE [fetch "-" "pure_unify_ind_def"];
Triviality pure_unify_side:
(∀s t1 t2. pure_unify_side s t1 t2 ⇔ pure_wfs s) ∧
(∀s ts1 ts2. pure_unifyl_side s ts1 ts2 ⇔ pure_wfs s)
Proof
qsuff_tac ‘
(∀s t1 t2. pure_wfs s ⇒ pure_wfs s ⇒ pure_unify_side s t1 t2) ∧
(∀s ts1 ts2. pure_wfs s ⇒ pure_wfs s ⇒ pure_unifyl_side s ts1 ts2)’
>-
(rw [] \\ Cases_on ‘pure_wfs s’ \\ fs []
\\ simp [Once $ fetch "-" "pure_unify_side_def"])
\\ ho_match_mp_tac pure_unify_ind_lemma
\\ rw []
\\ simp [Once $ fetch "-" "pure_unify_side_def"]
\\ rw [] \\ fs [SF SFY_ss]
\\ res_tac \\ fs []
\\ imp_res_tac pure_unificationTheory.pure_unify_wfs \\ fs []
QED
val _ = pure_unify_side |> update_precondition;
Definition pure_unify_empty_def:
pure_unify_empty x y = pure_unify FEMPTY x y
End
val r = translate pure_unify_empty_def;
Theorem pure_walkstar_ind:
∀P. (∀v13 v14.
(∀x9 x8 x7 x6 x5 x4 x3.
(pure_walk v13 v14 = TypeCons x9 x8 ⇒ ∀x1. MEM x1 x8 ⇒ P v13 x1) ∧
(pure_walk v13 v14 = Tuple x7 ⇒ ∀x2. MEM x2 x7 ⇒ P v13 x2) ∧
(pure_walk v13 v14 = Function x6 x5 ⇒ P v13 x6 ∧ P v13 x5) ∧
(pure_walk v13 v14 = Array x4 ⇒ P v13 x4) ∧
(pure_walk v13 v14 = M x3 ⇒ P v13 x3)) ⇒
P v13 v14) ⇒
∀s t. pure_wfs s ⇒ P s t
Proof
rpt strip_tac
\\ drule pure_unificationTheory.pure_walkstar_ind
\\ disch_then $ qspec_then ‘λx. P s x’ mp_tac
\\ simp []
QED
Triviality pure_walkstar_eta:
MAP (pure_walkstar s) = MAP $ λx. pure_walkstar s x
Proof
AP_TERM_TAC \\ fs [FUN_EQ_THM]
QED
val r = translate
(pure_unificationTheory.pure_walkstar
|> SIMP_RULE std_ss [PULL_FORALL,EXISTS_eq,MAP,MEMBER_def]
|> SPEC_ALL
|> MATCH_MP PRECONDITION_INTRO
|> ONCE_REWRITE_RULE [pure_walkstar_eta]);
Theorem pure_walkstar_side:
pure_walkstar_side s t = pure_wfs s
Proof
reverse $ Cases_on ‘pure_wfs s’ \\ simp []
>- simp [Once $ fetch "-" "pure_walkstar_side_def"]
\\ first_assum mp_tac
\\ pop_assum mp_tac
\\ qid_spec_tac ‘t’
\\ qid_spec_tac ‘s’
\\ ho_match_mp_tac pure_walkstar_ind
\\ rw []
\\ simp [Once $ fetch "-" "pure_walkstar_side_def"]
QED
val _ = pure_walkstar_side |> update_precondition;
(*-----------------------------------------------------------------------*
solve
*-----------------------------------------------------------------------*)
val r = translate is_solveable_def;
val r = translate get_solveable_def;
val r = translate activevars_def;
val r = translate oreturn_def;
val r = translate generalise_def;
val r = translate monomorphise_implicit_def;
val r = translate subst_constraint_def;
Theorem subst_constraint_side:
∀s t. subst_constraint_side s t = pure_wfs s
Proof
ho_match_mp_tac subst_constraint_ind \\ rw []
\\ simp [Once $ fetch "-" "subst_constraint_side_def"]
\\ fs [fetch "-" "subst_vars_side_def"]
QED
val _ = subst_constraint_side |> update_precondition;
Triviality infer_bind:
infer_bind (g : ('a,'e) inferM) f = λs.
case g s of
| Err e => Err e
| OK (x, s') => (f x : ('b,'e) inferM) s'
Proof
fs [infer_bind_def,FUN_EQ_THM]
QED
val r = translate
(solve_def |> RW [GSYM pure_unify_empty_def]
|> SIMP_RULE std_ss [infer_bind]);
Theorem solve_side:
∀s. solve_side s
Proof
ho_match_mp_tac solve_ind \\ rw []
\\ simp [Once $ fetch "-" "solve_side_def"]
\\ rw [] \\ gvs []
\\ Cases_on ‘pure_unify_empty x29 x28’
\\ gvs [oreturn_def,fail_def,return_def]
\\ fs [pure_unify_empty_def]
\\ imp_res_tac pure_unificationTheory.pure_unify_wfs
\\ fs []
QED
val r = solve_side |> update_precondition;
(*-----------------------------------------------------------------------*
top-level entry point
*-----------------------------------------------------------------------*)
val r = translate pure_inferenceTheory.infer_top_level_def;
val r = translate pure_typingTheory.freetyvars_ok_def;
Triviality type_wf_eq:
type_wf typedefs v ⇔
case v of
TypeVar n => T
| PrimTy pty => T
| Exception => T
| TypeCons id tyargs =>
(EVERY I (MAP (λa. type_wf typedefs a) tyargs) ∧
case LLOOKUP typedefs id of
| NONE => F
| SOME (arity,constructors) => LENGTH tyargs = arity)
| Tuple ts => EVERY I (MAP (λa. type_wf typedefs a) ts)
| Function tf t => type_wf typedefs t ∧ type_wf typedefs tf
| Array t => type_wf typedefs t
| M t => type_wf typedefs t
Proof
Cases_on ‘v’ \\ fs [pure_typingTheory.type_wf_def]
\\ fs [EVERY_MAP]
\\ rpt (CASE_TAC \\ fs []) \\ eq_tac \\ rw []
QED
val r = translate type_wf_eq;
Definition every_pair_def:
every_pair P [] = T ∧
(every_pair P ((x,y)::xs) ⇔ P x y ∧ every_pair P xs)
End
Triviality intro_every_pair:
EVERY P xs ⇔ every_pair (λx y. P (x,y)) xs
Proof
Induct_on ‘xs’ \\ fs [FORALL_PROD,every_pair_def]
QED
val r = translate (pure_inferenceTheory.typedefs_ok_impl_def
|> SIMP_RULE std_ss [intro_every_pair]);
val r = translate pure_inferenceTheory.infer_types_def;
val _ = export_theory ();