-
Notifications
You must be signed in to change notification settings - Fork 4
/
logger.py
44 lines (37 loc) · 1.64 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
class Logger(object):
def __init__(self, runs, info=None):
self.info = info
self.results = [[] for _ in range(runs)]
def add_result(self, run, result):
assert len(result) == 3
assert run >= 0 and run < len(self.results)
self.results[run].append(result)
def print_statistics(self, run=None):
if run is not None:
result = 100 * torch.tensor(self.results[run])
argmax = result[:, 1].argmax().item()
print(f'Run {run + 1:02d}:')
print(f'Highest Train: {result[:, 0].max():.2f}')
print(f'Highest Valid: {result[:, 1].max():.2f}')
print(f' Final Train: {result[argmax, 0]:.2f}')
print(f' Final Test: {result[argmax, 2]:.2f}')
else:
result = 100 * torch.tensor(self.results)
best_results = []
for r in result:
train1 = r[:, 0].max().item()
valid = r[:, 1].max().item()
train2 = r[r[:, 1].argmax(), 0].item()
test = r[r[:, 1].argmax(), 2].item()
best_results.append((train1, valid, train2, test))
best_result = torch.tensor(best_results)
print(f'All runs:')
r = best_result[:, 0]
print(f'Highest Train: {r.mean():.2f} ± {r.std():.2f}')
r = best_result[:, 1]
print(f'Highest Valid: {r.mean():.2f} ± {r.std():.2f}')
r = best_result[:, 2]
print(f' Final Train: {r.mean():.2f} ± {r.std():.2f}')
r = best_result[:, 3]
print(f' Final Test: {r.mean():.2f} ± {r.std():.2f}')