-
Notifications
You must be signed in to change notification settings - Fork 4
/
Functions.py
337 lines (312 loc) · 11 KB
/
Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from PyPDF2 import PdfReader
from docx import Document
from gtts import gTTS
from IPython.display import Audio
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from peft import PeftModel, PeftConfig
from keybert import KeyBERT
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
# ------------------------------------------------------------Extracting PDF & Docx File-------------------------------------------------------------
def text_extractor(file):
if file.type=='application/vnd.openxmlformats-officedocument.wordprocessingml.document':
extracted_docx=[]
document = Document(file)
paragraph=document.paragraphs
for p in document.paragraphs:
extracted_docx.append(p.text)
wholeText = ' '
paragraph = wholeText.join(extracted_docx)
return paragraph
elif file.type=='application/pdf':
Extracted_page_list=[]
text,textN='',''
reader=PdfReader(file)
for i in range(len(reader.pages)):
pageObj = reader.pages[i]
text=pageObj.extract_text()
textN=text.replace('\n',' ')
Extracted_page_list.append(textN)
wholeText = ' '
result = wholeText.join(Extracted_page_list)
return result
else:
return None
#------------------------------------------------------------------------Fine Tuned BART Model-----------------------------------------------
def fine_tuned_bart(text,max_token):
config = PeftConfig.from_pretrained("cherryberry01/Re_Sum")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
model = PeftModel.from_pretrained(model, "cherryberry01/Re_Sum")
tokenizer=AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
summ=pipeline('summarization',model=model,tokenizer=tokenizer,truncation=True)
summary = summ(text,min_length = 10, max_length = max_token)
return summary[0]['summary_text']
# ----------------------------------------------------------------- Pegasus Model ------------------------------------------------------------
def sum_pegasus(text,min_length):
tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")
model = AutoModelForSeq2SeqLM.from_pretrained("google/pegasus-xsum")
text=text
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer,truncation=True)
summary=summarizer(text, min_length=min_length, max_length = 10000)
return summary[0]['summary_text']
#--------------------------------------------------------------------Facebook Large CNN Model------------------------------------------------
def FB_BERT_LARGE_CNN(text,min_length):
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
text = text
summarizer = pipeline("summarization", model='facebook/bart-large-cnn', tokenizer=tokenizer,truncation = True)
summary=summarizer(text, min_length=min_length, max_length = 10000)
return summary[0]['summary_text']
# ------------------------------------------------------------------ For Translating the Text-------------------------------------------------
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
def translate(text,target,max_length):
model = AutoModelForSeq2SeqLM.from_pretrained('facebook/nllb-200-distilled-600M')
tokenizer = AutoTokenizer.from_pretrained('facebook/nllb-200-distilled-600M')
translator=pipeline('translation', model=model, tokenizer=tokenizer,src_lang='eng_Latn', tgt_lang=language[target],max_length=max_length)
translated_text=translator(text)
return translated_text[0]['translation_text']
language = {'Acehnese (Arabic script)': 'ace_Arab',
'Acehnese (Latin script)': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Taizzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic' :'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic (Romanized)': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic' :'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian' : 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar (Arabic script)': 'bjn_Arab',
'Banjar (Latin script)': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha' :'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri (Arabic script)': 'kas_Arab',
'Kashmiri (Devanagari script)': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri (Arabic script)': 'knc_Arab',
'Central Kanuri (Latin script)': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè ': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau (Arabic script)': 'min_Arab',
'Minangkabau (Latin script)': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei (Bengali script)': 'mni_Beng',
'Halh Mongolian ':'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish ':'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
"Sicilian": 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak' :'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan' :'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi' :'snd_Arab',
'Somali' :'som_Latn',
'Southern Sotho' :'sot_Latn',
'Spanish' : 'spa_Latn',
'Tosk Albanian' :'als_Latn',
'Sardinian' :'srd_Latn',
'Tamil' : 'tam_Taml',
'Telugu' : 'tel_Telu',
'Kannada' : 'kan_Knda'}
#-----------------------------------------------------------------------Text To Speech---------------------------------------------------
def text_to_speech(text,lang_key):
tts = gTTS(text=text, lang=tts_language_dict[lang_key])
tts.save('saved_audio.wav')
tts_language_dict={'Afrikaans':'af',
'Arabic':'ar',
'Basque':'eu',
'Bengali':'bn',
'Bulgarian':'bg',
'Catalan':'ca',
'Chinese':'yue',
'Czech':'cs',
'Danish':'da',
'Dutch':'nl',
'English':'en',
'Filipino':'fil',
'Finnish':'fi',
'French':'fr',
'Galician':'gl',
'German':'de',
'Greek':'el',
'Gujarati':'gu',
'Hebrew':'he',
'Hindi':'hi',
'Hungarian':'hu',
'Icelandic':'is',
'Indonesian':'id',
'Italian':'it',
'Japanese':'ja',
'Kannada':'kn',
'Korean':'ko',
'Latvian':'lv',
'Lithuanian':'lt',
'Malay':'ms',
'Malayalam':'ml',
'Mandarin Chinese':'cmn',
'Marathi':'mr',
'Norwegian':'nb',
'Polish':'pl',
'Portuguese':'pt',
'Punjabi':'pa',
'Romanian':'ro',
'Russian':'ru',
'Serbian':'sr',
'Slovak':'sk',
'Spanish':'es',
'Swedish':'sv',
'Tamil':'ta',
'Telugu':'te',
'Thai':'th',
'Turkish':'tr',
'Ukrainian':'uk',
'Vietnamese':'vi'}
#------------------------------------------------------------KEYWORDS EXTRACTION---------------------------------------------------------------------
def extract_keywords_with_keybert(article_text, top_n=5, diversity=0.5):
model = KeyBERT(model="distilbert-base-nli-mean-tokens")
keywords_with_scores = model.extract_keywords(
article_text,
top_n=top_n,
keyphrase_ngram_range=(1, 2),
stop_words="english",
diversity=diversity
)
# Filter out similar keywords
filtered_keywords = []
vectorizer = CountVectorizer().fit([k[0] for k in keywords_with_scores])
keyword_vectors = vectorizer.transform([k[0] for k in keywords_with_scores])
for i, keyword in enumerate(keywords_with_scores):
if i == 0:
filtered_keywords.append(keyword)
continue
sim_scores = cosine_similarity(keyword_vectors[i], keyword_vectors[:i])
if np.max(sim_scores) < 0.8: # Threshold for similarity
filtered_keywords.append(keyword)
#texts_with_bullet_points = ['• ' + item[0] for item in data]
texts_only = ['• ' + item[0] for item in filtered_keywords]
return '\n'.join(texts_only)