forked from EleutherAI/gpt-neo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_experiment.py
219 lines (173 loc) · 7.49 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import atexit
import sacred
import argparse
import time
import math
import subprocess
import shutil
import os
import json
import threading
import requests
import glob
from configs import fetch_model_params
import socket
import subprocess
import queue
parser = argparse.ArgumentParser()
parser.add_argument('--tpu', type=str, required=True) # Name of TPU to train on, if any
parser.add_argument('--model', type=str, required=True) # JSON file that contains model parameters
parser.add_argument('--experiment_name', type=str, required=True) # name of experiment (will show up in omniboard)
parser.add_argument('--steps_per_checkpoint', type=int, default=5000)
parser.add_argument('--autostack', action="store_false")
parser.add_argument('--auto_layout', action="store_true")
parser.add_argument('--auto_layout_and_mesh_shape', action="store_true")
parser.add_argument('--new', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--predict', action='store_true')
parser.add_argument('--no_delete_tpu', action='store_true')
parser.add_argument('--heartbeat_timeout', type=int, default=1800) # kill and restart if nothing logged to tensorboard in this many seconds
args = parser.parse_args()
params = fetch_model_params(args.model)
ex = sacred.Experiment(args.experiment_name)
ex.observers.append(sacred.observers.QueuedMongoObserver(url='127.0.0.1:27017', db_name='db', username='user', password='password'))
def get_open_port(lo=8000, hi=8100):
for i in range(lo, hi):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
if s.connect_ex(('localhost', i)) != 0:
return i
def train_thread(args, tpu, id, q):
print('starting training on', tpu)
# pass binary flags through
opts = ''
for flag in ['auto_layout', 'auto_layout_and_mesh_shape', 'new', 'test', 'predict', ]:
if args.__getattribute__(flag):
opts += ' --' + flag
for flag in ['autostack', ]:
if not args.__getattribute__(flag):
opts += ' --' + flag
cmd = "python3 main.py --tpu {tpu} --model run_configs/config_{id}.json --steps_per_checkpoint {steps_per_checkpoint} {opts}".format(tpu=tpu, id=id, steps_per_checkpoint=args.steps_per_checkpoint, opts=opts)
print('Running:', cmd)
proc = subprocess.Popen(cmd, shell=True)
# poll until it's exited
while proc.poll() is None:
time.sleep(60)
try:
nq, *nargs = q.get_nowait()
if nq == 'kill':
print('train thread recieved kill signal from logging thread')
# first send SIGTERM
proc.terminate()
time.sleep(60)
# if it still hasn't exited, we send SIGKILL
if proc.poll() is None:
print('SIGTERM not successful, sending SIGKILL')
proc.kill()
except queue.Empty:
pass
print('exited training!')
if args.no_delete_tpu:
print('recreate done, exiting train_thread - not killing tpu!')
return
print("Recreating {} in 60sec...".format(tpu))
time.sleep(60)
os.system("pu recreate {} --yes --retry 3600 --retry-randomness 1.5".format(tpu))
print('recreate done, exiting train_thread')
# clear out queue
while True:
try:
q.get_nowait()
print('dropped request in queue after pu recreate')
except queue.Empty:
break
def get_json(uri, params=None, timeout=15):
resp = requests.get(uri, params=params, timeout=timeout)
resp.raise_for_status()
return resp.json()
def get_tag_sets(base_uri):
j = get_json(f'{base_uri}/data/plugin/scalars/tags', {'experiment': ''})
assert isinstance(j, dict)
return {
run: j[run].keys()
for run in j.keys()
}
def get_scalar_data(base_uri, run, tag):
j = get_json(f'{base_uri}/data/plugin/scalars/scalars', {'experiment': '', 'run': run, 'tag': tag})
assert isinstance(j, list)
return j
def get_run_data(port):
base_uri = f'http://localhost:{port}/'
r = {}
try:
tag_sets = get_tag_sets(base_uri)
runs = tag_sets.keys()
if '.' in runs:
if 'loss' in tag_sets['.']:
r['loss'] = get_scalar_data(base_uri, '.', 'loss')
if 'eval_lambada' in runs:
if 'lambada_acc' in tag_sets['eval_lambada']:
r['lambada_acc'] = get_scalar_data(base_uri, 'eval_lambada', 'lambada_acc')
if 'lambada_log_ppl' in tag_sets['eval_lambada']:
r['lambada_ppl'] = [
[t, s, math.exp(lp)]
for [t, s, lp] in get_scalar_data(base_uri, 'eval_lambada', 'lambada_log_ppl')
]
except:
import traceback
traceback.print_exc()
return r
@ex.main
def main(_run):
print('Starting run', _run._id)
print('WARNING: please remember to remove old metric log files from the model directory.')
os.makedirs('run_configs', exist_ok=True)
shutil.copy(args.model if args.model.endswith('.json') else 'configs/{}.json'.format(args.model), 'run_configs/config_{}.json'.format(_run._id))
tensorboard_port = get_open_port()
print('Tensorboard at port:', tensorboard_port)
print('Tensorboard url: ', 'http://eleutherai.bmk.sh:'+ str(tensorboard_port))
os.system("screen -S tensorboard_{} -d -m bash -c 'tensorboard --logdir {} --port {} --bind_all --reload_multifile=true || tensorboard --logdir {} --port {} --reload_multifile=true'".format(_run._id, params["model_path"], tensorboard_port,params["model_path"], tensorboard_port,))
atexit.register(goodbye, _run._id)
curr_step = {}
while True:
last_tb_log_time = time.time()
q = queue.Queue()
trainthd = threading.Thread(target=train_thread, args=(args, args.tpu, _run._id, q))
trainthd.start()
while trainthd.is_alive():
time.sleep(60)
print('Polling tensorboard for metrics...')
data = get_run_data(tensorboard_port)
for k in data.keys():
for ts, step, val in data[k]:
if step <= curr_step.get(k, -1):
continue
_run.log_scalar(k, val, step)
if k == 'loss':
_run.log_scalar('tb_ts', ts, step)
print('Logged to sacred: step={},loss={},tb_ts={}'.format(step, val, ts))
# found something new, so logging!
last_tb_log_time = time.time()
curr_step[k] = step
if time.time() - last_tb_log_time > args.heartbeat_timeout:
# the run hasn't logged in a while, so we restart it
q.put(('kill',))
# give training thread some time to do its thing and recreate tpu
while trainthd.is_alive():
print('logging thread waiting for killing stalled run and for tpu recreate to finish')
time.sleep(60)
if args.no_delete_tpu:
break
def goodbye(id):
print("You are now leaving the Python sector.")
print("Sie verlassen den pythonischen Sektor.")
os.system("screen -S tensorboard_{} -X quit".format(id))
if __name__ == '__main__':
for file in glob.glob("**/*"):
if file.split('.')[-1] in ['py']:
print('Adding', file, 'to sacred')
ex.add_source_file(file)
ex.add_config({
'tpu_name': args.tpu,
**params
})
ex.run()