-
Notifications
You must be signed in to change notification settings - Fork 0
/
face-detection.py
65 lines (45 loc) · 1.69 KB
/
face-detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import face_recognition
import numpy as np
import os #used for automatically making a list of images and its encodings from a folder
path = 'ImageBasic'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cl in myList[1:]:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
def findEncoding(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListKnown = findEncoding(images)
print('Encoding Complete')
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
imgS = cv2.resize(img,(0,0),None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
for encodeFace,faceLoc in zip(encodeCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
print(name)
y1,x2,y2,x1 = faceLoc
y1,x2,y2,x1 = y1*4, x2*4, y2*4, x1*4
cv2.rectangle(img, (x1,y1),(x2,y2),(255,0,0),2)
cv2.rectangle(img, (x1,y1-35), (x2,y2),(255,0,0))
cv2.putText(img, name,(x1+6,y2-6),cv2.FONT_ITALIC,1, (255,255,255),2)
cv2.imshow('Webcam', img)
cv2.waitKey(1)