forked from revenol/DROO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memory.py
188 lines (145 loc) · 6.93 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# #################################################################
# This file contains memory operation including encoding and decoding operations.
#
# version 1.0 -- January 2018. Written by Liang Huang (lianghuang AT zjut.edu.cn)
# #################################################################
from __future__ import print_function
import tensorflow as tf
import numpy as np
# DNN network for memory
class MemoryDNN:
def __init__(
self,
net,
learning_rate = 0.01,
training_interval=10,
batch_size=100,
memory_size=1000,
output_graph=False
):
# net: [n_input, n_hidden_1st, n_hidded_2ed, n_output]
assert(len(net) is 4) # only 4-layer DNN
self.net = net
self.training_interval = training_interval # learn every #training_interval
self.lr = learning_rate
self.batch_size = batch_size
self.memory_size = memory_size
# store all binary actions
self.enumerate_actions = []
# stored # memory entry
self.memory_counter = 1
# store training cost
self.cost_his = []
# reset graph
tf.reset_default_graph()
# initialize zero memory [h, m]
self.memory = np.zeros((self.memory_size, self.net[0]+ self.net[-1]))
# construct memory network
self._build_net()
self.sess = tf.Session()
# for tensorboard
if output_graph:
# $ tensorboard --logdir=logs
# tf.train.SummaryWriter soon be deprecated, use following
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
def _build_net(self):
def build_layers(h, c_names, net, w_initializer, b_initializer):
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [net[0], net[1]], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, self.net[1]], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(h, w1) + b1)
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [net[1], net[2]], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, net[2]], initializer=b_initializer, collections=c_names)
l2 = tf.nn.relu(tf.matmul(l1, w2) + b2)
with tf.variable_scope('M'):
w3 = tf.get_variable('w3', [net[2], net[3]], initializer=w_initializer, collections=c_names)
b3 = tf.get_variable('b3', [1, net[3]], initializer=b_initializer, collections=c_names)
out = tf.matmul(l2, w3) + b3
return out
# ------------------ build memory_net ------------------
self.h = tf.placeholder(tf.float32, [None, self.net[0]], name='h') # input
self.m = tf.placeholder(tf.float32, [None, self.net[-1]], name='mode') # for calculating loss
self.is_train = tf.placeholder("bool") # train or evaluate
with tf.variable_scope('memory_net'):
c_names, w_initializer, b_initializer = \
['memory_net_params', tf.GraphKeys.GLOBAL_VARIABLES], \
tf.random_normal_initializer(0., 1/self.net[0]), tf.constant_initializer(0.1) # config of layers
self.m_pred = build_layers(self.h, c_names, self.net, w_initializer, b_initializer)
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = self.m, logits = self.m_pred))
with tf.variable_scope('train'):
self._train_op = tf.train.AdamOptimizer(self.lr, 0.09).minimize(self.loss)
def remember(self, h, m):
# replace the old memory with new memory
idx = self.memory_counter % self.memory_size
self.memory[idx, :] = np.hstack((h,m))
self.memory_counter += 1
def encode(self, h, m):
# encoding the entry
self.remember(h, m)
# train the DNN every 10 step
# if self.memory_counter> self.memory_size / 2 and self.memory_counter % self.training_interval == 0:
if self.memory_counter % self.training_interval == 0:
self.learn()
def learn(self):
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
h_train = batch_memory[:, 0: self.net[0]]
m_train = batch_memory[:, self.net[0]:]
# print(h_train)
# print(m_train)
# train the DNN
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.h: h_train, self.m: m_train})
assert(self.cost >0)
self.cost_his.append(self.cost)
def decode(self, h, k = 1, mode = 'OP'):
# to have batch dimension when feed into tf placeholder
h = h[np.newaxis, :]
m_pred = self.sess.run(self.m_pred, feed_dict={self.h: h})
if mode is 'OP':
return self.knm(m_pred[0], k)
elif mode is 'KNN':
return self.knn(m_pred[0], k)
else:
print("The action selection must be 'OP' or 'KNN'")
def knm(self, m, k = 1):
# return k-nearest-mode
m_list = []
# generate the first binary offloading decision
# note that here 'm' is the output of DNN before the sigmoid activation function, in the field of all real number.
# Therefore, we compare it with '0' instead of 0.5 in equation (8). Since, sigmod(0) = 0.5.
m_list.append(1*(m>0))
if k > 1:
# generate the remaining K-1 binary offloading decisions with respect to equation (9)
m_abs = abs(m)
idx_list = np.argsort(m_abs)[:k-1]
for i in range(k-1):
if m[idx_list[i]] >0:
# set a positive user to 0
m_list.append(1*(m - m[idx_list[i]] > 0))
else:
# set a negtive user to 1
m_list.append(1*(m - m[idx_list[i]] >= 0))
return m_list
def knn(self, m, k = 1):
# list all 2^N binary offloading actions
if len(self.enumerate_actions) is 0:
import itertools
self.enumerate_actions = np.array(list(map(list, itertools.product([0, 1], repeat=self.net[0]))))
# the 2-norm
sqd = ((self.enumerate_actions - m)**2).sum(1)
idx = np.argsort(sqd)
return self.enumerate_actions[idx[:k]]
def plot_cost(self):
import matplotlib.pyplot as plt
plt.plot(np.arange(len(self.cost_his))*self.training_interval, self.cost_his)
plt.ylabel('Training Loss')
plt.xlabel('Time Frames')
plt.show()