-
Notifications
You must be signed in to change notification settings - Fork 6
/
train.py
32 lines (29 loc) · 1.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import argparse
from PAPC.train import train
parser = argparse.ArgumentParser(description='PAPC Initialization')
parser.add_argument('--model_name', type=str, default='pointnet_basic', help='The name of model, such as pointnet, pointnet2 and so on')
parser.add_argument('--mode', type=str, default='clas', help='"clas", "seg" or "detect"')
parser.add_argument('--max_point', type=int, default=1024, help='How many points in a sample during training')
parser.add_argument('--num_classes', type=int, default=16, help='How many classes in classification during training')
parser.add_argument('--num_parts', type=int, default=50, help='How many classes in segmentation during training')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=0.001, help='Weight decay')
parser.add_argument('--epoch_num', type=int, default=10, help='epoch for training')
parser.add_argument('--batchsize', type=int, default=32, help='Mini batch size of one gpu or cpu')
parser.add_argument('--info_iter', type=int, default=40, help='How many iters to info measurement during training')
parser.add_argument('--save_iter', type=int, default=2, help='How many iters to save a model snapshot once during training')
parser.add_argument('--path', type=str, default='./dataset/', help='The directory for finding dataset')
args = parser.parse_args()
if __name__ == '__main__':
train(args.model_name,
args.mode,
args.max_point,
args.num_classes,
args.num_parts,
args.learning_rate,
args.weight_decay,
args.epoch_num,
args.batchsize,
args.info_iter,
args.save_iter,
args.path)