-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
144 lines (124 loc) · 5.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import cv2
import os
import pickle
import face_recognition
import numpy as np
import cvzone
import firebase_admin
from firebase_admin import credentials, db, storage
from datetime import datetime
cred = credentials.Certificate("serviceAccountKey.json")
firebase_admin.initialize_app(cred, {
'databaseURL':"",
'storageBucket':""
})
bucket = storage.bucket()
cap = cv2.VideoCapture(1)
cap.set(3, 640)
cap.set(4, 480)
imgBackground = cv2.imread('Resources/background.png')
folderModePath = 'Resources/Modes'
modePathList = os.listdir(folderModePath)
imgModeList = []
#print(modePathList)
for path in modePathList:
imgModeList.append(cv2.imread(os.path.join(folderModePath, path)))
#print(len(imgModeList))
# Load the encoidng file
print("Loading Encode File ...")
file = open('EncodeFile.p', 'rb')
encodeListKnownWithIds = pickle.load(file)
file.close()
encodeListKnown, studentIds = encodeListKnownWithIds
#print(studentIds)
print("Encode File Loaded")
modeType = 0
counter = 0
id = -1
imgStudent = []
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0 , 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_RGB2BGR)
faceCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, faceCurFrame)
imgBackground[162:162+480, 55:55+640] = img
imgBackground[44:44 + 633, 808:808+414] = imgModeList[modeType]
if faceCurFrame:
for encodeFace, faceLoc in zip(encodeCurFrame, faceCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print( "Matches",matches)
# print("FaceDistance", faceDis)
matchIndex = np.argmin(faceDis)
# print("Match Index", matchIndex)
if matches[matchIndex]:
# print("Known Face Detected")
# print(studentIds[matchIndex])
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
bbox = 55 + x1, 162 + y1, x2 - x1, y2 - y1
imgBackground = cvzone.cornerRect(imgBackground, bbox, rt=0)
id = studentIds[matchIndex]
if counter == 0:
# cvzone.putTextRect(imgBackground, "LOADING...", (275 , 400))
# cv2.imshow("Face Attendance", imgBackground)
# cv2.waitKey(1)
counter = 1
modeType = 1
if counter != 0:
if counter == 1:
# Get the Data
studentInfo = db.reference(f'Students/{id}').get()
print(studentInfo)
blob = bucket.get_blob(f'Images/{id}.jpg')
array = np.frombuffer(blob.download_as_string(), np.uint8)
imgStudent = cv2.imdecode(array, cv2.COLOR_BGRA2BGR)
# Update attandence
datatimeObject = datetime.strptime(studentInfo['last_attendance_time'],"%Y-%m-%d %H:%M:%S")
secondElapsed = (datetime.now()-datatimeObject).total_seconds()
print(secondElapsed)
if secondElapsed > 30:
ref = db.reference(f'Students/{id}')
studentInfo['total_attendance'] += 1
ref.child('total_attendance').set(studentInfo['total_attendance'])
ref.child('last_attendance_time').set(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
else:
modeType = 3
counter = 0
imgBackground[44:44 + 633, 808:808+414] = imgModeList[modeType]
if modeType != 3:
if 10 < counter <20:
modeType = 2
imgBackground[44:44 + 633, 808:808+414] = imgModeList[modeType]
if counter<=10:
cv2.putText(imgBackground, str(studentInfo['total_attendance']), (861, 125),
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 1)
cv2.putText(imgBackground, str(studentInfo['major']), (1006, 550),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(id), (1006, 493),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(studentInfo['standing']), (910, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['year']), (1025, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['starting_year']), (1125, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
(w, h), _ = cv2.getTextSize(studentInfo['name'], cv2.FONT_HERSHEY_COMPLEX,1, 1)
offset = (414-w)//2
cv2.putText(imgBackground, str(studentInfo['name']), (808+offset, 445),
cv2.FONT_HERSHEY_COMPLEX,1,(50, 50, 50, 1))
imgBackground[175:175+216, 909:909+216] = imgStudent
counter+=1
if counter >=20:
couter = 0
modeType = 0
studentInfo = []
imgStudent = []
imgBackground[44:44 + 633, 808:808+414] = imgModeList[modeType]
else:
modeType = 0
counter = 0
#cv2.imshow("Webcam", img)
cv2.imshow("Student Attendance", imgBackground)
cv2.waitKey(1)