-
Notifications
You must be signed in to change notification settings - Fork 460
/
gradio_demo.py
253 lines (217 loc) · 9.2 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) Tencent Inc. All rights reserved.
import os
import sys
import argparse
import os.path as osp
from io import BytesIO
from functools import partial
import cv2
import onnx
import torch
import onnxsim
import numpy as np
import gradio as gr
from PIL import Image
import supervision as sv
from torchvision.ops import nms
from mmengine.runner import Runner
from mmengine.dataset import Compose
from mmengine.runner.amp import autocast
from mmengine.config import Config, DictAction, ConfigDict
from mmdet.datasets import CocoDataset
from mmyolo.registry import RUNNERS
sys.path.append('./deploy')
from easydeploy import model as EM
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator(thickness=1)
MASK_ANNOTATOR = sv.MaskAnnotator()
class LabelAnnotator(sv.LabelAnnotator):
@staticmethod
def resolve_text_background_xyxy(
center_coordinates,
text_wh,
position,
):
center_x, center_y = center_coordinates
text_w, text_h = text_wh
return center_x, center_y, center_x + text_w, center_y + text_h
LABEL_ANNOTATOR = LabelAnnotator(text_padding=4,
text_scale=0.5,
text_thickness=1)
def parse_args():
parser = argparse.ArgumentParser(description='YOLO-World Demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics',
default='output')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def run_image(runner,
image,
text,
max_num_boxes,
score_thr,
nms_thr,
image_path='./work_dirs/demo.png'):
# image.save(image_path)
texts = [[t.strip()] for t in text.split(',')] + [[' ']]
data_info = dict(img_id=0, img=np.array(image), texts=texts)
data_info = runner.pipeline(data_info)
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0),
data_samples=[data_info['data_samples']])
with autocast(enabled=False), torch.no_grad():
output = runner.model.test_step(data_batch)[0]
pred_instances = output.pred_instances
keep = nms(pred_instances.bboxes,
pred_instances.scores,
iou_threshold=nms_thr)
pred_instances = pred_instances[keep]
pred_instances = pred_instances[pred_instances.scores.float() > score_thr]
if len(pred_instances.scores) > max_num_boxes:
indices = pred_instances.scores.float().topk(max_num_boxes)[1]
pred_instances = pred_instances[indices]
pred_instances = pred_instances.cpu().numpy()
if 'masks' in pred_instances:
masks = pred_instances['masks']
else:
masks = None
detections = sv.Detections(xyxy=pred_instances['bboxes'],
class_id=pred_instances['labels'],
confidence=pred_instances['scores'],
mask=masks)
labels = [
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in
zip(detections.class_id, detections.confidence)
]
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections)
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels)
if masks is not None:
image = MASK_ANNOTATOR.annotate(image, detections)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
image = Image.fromarray(image)
return image
def export_model(runner, text, max_num_boxes, score_thr, nms_thr):
backend = EM.MMYOLOBackend.ONNXRUNTIME
postprocess_cfg = ConfigDict(pre_top_k=10 * max_num_boxes,
keep_top_k=max_num_boxes,
iou_threshold=nms_thr,
score_threshold=score_thr)
base_model = runner.model
texts = [[t.strip() for t in text.split(',')] + [' ']]
base_model.reparameterize(texts)
deploy_model = EM.DeployModel(baseModel=base_model,
backend=backend,
postprocess_cfg=postprocess_cfg)
deploy_model.eval()
device = (next(iter(base_model.parameters()))).device
fake_input = torch.ones([1, 3, 640, 640], device=device)
deploy_model(fake_input)
save_onnx_path = os.path.join(
args.work_dir,
os.path.basename(args.checkpoint).replace('pth', 'onnx'))
# export onnx
with BytesIO() as f:
output_names = ['num_dets', 'boxes', 'scores', 'labels']
torch.onnx.export(deploy_model,
fake_input,
f,
input_names=['images'],
output_names=output_names,
opset_version=12)
f.seek(0)
onnx_model = onnx.load(f)
onnx.checker.check_model(onnx_model)
onnx_model, check = onnxsim.simplify(onnx_model)
onnx.save(onnx_model, save_onnx_path)
return gr.update(visible=True), save_onnx_path
def demo(runner, args):
with gr.Blocks(title="YOLO-World") as demo:
with gr.Row():
gr.Markdown('<h1><center>YOLO-World: Real-Time Open-Vocabulary '
'Object Detector</center></h1>')
with gr.Row():
with gr.Column(scale=0.3):
with gr.Row():
image = gr.Image(type='pil', label='input image')
input_text = gr.Textbox(
lines=7,
label='Enter the classes to be detected, '
'separated by comma',
value=', '.join(CocoDataset.METAINFO['classes']),
elem_id='textbox')
with gr.Row():
submit = gr.Button('Submit')
clear = gr.Button('Clear')
with gr.Row():
export = gr.Button('Deploy and Export ONNX Model')
with gr.Row():
gr.Markdown(
"It takes a few seconds to generate the ONNX file! YOLO-World-Seg (segmentation) is not supported now"
)
out_download = gr.File(visible=False)
max_num_boxes = gr.Slider(minimum=1,
maximum=300,
value=100,
step=1,
interactive=True,
label='Maximum Number Boxes')
score_thr = gr.Slider(minimum=0,
maximum=1,
value=0.05,
step=0.001,
interactive=True,
label='Score Threshold')
nms_thr = gr.Slider(minimum=0,
maximum=1,
value=0.7,
step=0.001,
interactive=True,
label='NMS Threshold')
with gr.Column(scale=0.7):
output_image = gr.Image(type='pil', label='output image')
submit.click(partial(run_image, runner),
[image, input_text, max_num_boxes, score_thr, nms_thr],
[output_image])
clear.click(lambda: [None, '', None], None,
[image, input_text, output_image])
export.click(partial(export_model, runner),
[input_text, max_num_boxes, score_thr, nms_thr],
[out_download, out_download])
demo.launch(server_name='0.0.0.0',
server_port=8080) # port 80 does not work for me
if __name__ == '__main__':
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if args.work_dir is not None:
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if 'runner_type' not in cfg:
runner = Runner.from_cfg(cfg)
else:
runner = RUNNERS.build(cfg)
runner.call_hook('before_run')
runner.load_or_resume()
pipeline = cfg.test_dataloader.dataset.pipeline
pipeline[0].type = 'mmdet.LoadImageFromNDArray'
runner.pipeline = Compose(pipeline)
runner.model.eval()
demo(runner, args)