-
Notifications
You must be signed in to change notification settings - Fork 15
/
test.py
98 lines (79 loc) · 4.47 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn as nn
import config
import main
def clean_test(helper, epoch,
model, is_poison=False, visualize=True, agent_name_key=""):
model.eval()
total_loss = 0
correct = 0
dataset_size = 0
if helper.params['type'] == config.TYPE_LOAN:
for i in range(0, len(helper.allStateHelperList)):
state_helper = helper.allStateHelperList[i]
data_iterator = state_helper.get_testloader()
for batch_id, batch in enumerate(data_iterator):
data, targets = state_helper.get_batch(data_iterator, batch, evaluation=True)
dataset_size += len(data)
output = model(data)
total_loss += nn.functional.cross_entropy(output, targets,
reduction='sum').item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
else:
data_iterator = helper.test_data
for batch_id, batch in enumerate(data_iterator):
data, targets = helper.get_batch(data_iterator, batch, evaluation=True)
dataset_size += len(data)
output = model(data)
total_loss += nn.functional.cross_entropy(output, targets,
reduction='sum').item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(dataset_size)) if dataset_size!=0 else 0
total_l = total_loss / dataset_size if dataset_size!=0 else 0
main.logger.info('___Test-clean {} poisoned: {}, epoch: {}: Average loss: {:.4f}, '
'Accuracy: {}/{} ({:.4f}%)'.format(model.name, is_poison, epoch,
total_l, correct, dataset_size,
acc))
model.train()
return (total_l, acc, correct, dataset_size)
def adv_test(helper, epoch,
model, is_poison=False, visualize=True, agent_name_key=""):
model.eval()
total_loss = 0.0
correct = 0
dataset_size = 0
poison_data_count = 0
if helper.params['type'] == config.TYPE_LOAN:
for i in range(0, len(helper.allStateHelperList)):
state_helper = helper.allStateHelperList[i]
data_iterator = state_helper.get_testloader()
for batch_id, batch in enumerate(data_iterator):
data, targets, poison_num = state_helper.get_poison_batch(batch, feature_dict=helper.feature_dict,evaluation=True)
poison_data_count += poison_num
dataset_size += len(data)
output = model(data)
total_loss += nn.functional.cross_entropy(output, targets,
reduction='sum').item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
else:
data_iterator = helper.test_data_poison
for batch_id, batch in enumerate(data_iterator):
data, targets, poison_num = helper.get_poison_batch(batch, adversarial_index=-1, evaluation=True)
poison_data_count += poison_num
dataset_size += len(data)
output = model(data)
total_loss += nn.functional.cross_entropy(output, targets,
reduction='sum').item() # sum up batch loss
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(targets.data.view_as(pred)).cpu().sum().item()
acc = 100.0 * (float(correct) / float(poison_data_count)) if poison_data_count!=0 else 0
total_l = total_loss / poison_data_count if poison_data_count!=0 else 0
main.logger.info('___Test-poison {} poisoned: {}, epoch: {}: Average loss: {:.4f}, '
'Accuracy: {}/{} ({:.4f}%)'.format(model.name, is_poison, epoch,
total_l, correct, poison_data_count,
acc))
model.train()
return total_l, acc, correct, poison_data_count