forked from hpc203/virtual_try_on_use_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
451 lines (373 loc) · 19.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import argparse
import os.path
import numpy as np
import cv2 as cv
from numpy import linalg
from common import findFile
from human_parsing import parse_human
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL)
parser = argparse.ArgumentParser(description='Use this script to run virtial try-on using CP-VTON', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_image', type=str, default='test_img/000074_0.jpg', help='Path to image with person.')
parser.add_argument('--input_cloth', type=str, default='test_color/000010_1.jpg', help='Path to target cloth image')
parser.add_argument('--gmm_model', '-gmm', default='cp_vton_gmm.onnx', help='Path to Geometric Matching Module .onnx model.')
parser.add_argument('--tom_model', '-tom', default='cp_vton_tom.onnx', help='Path to Try-On Module .onnx model.')
parser.add_argument('--segmentation_model', default='lip_jppnet_384.pb', help='Path to cloth segmentation .pb model.')
parser.add_argument('--openpose_proto', default='openpose_pose_coco.prototxt', help='Path to OpenPose .prototxt model was trained on COCO dataset.')
parser.add_argument('--openpose_model', default='openpose_pose_coco.caffemodel', help='Path to OpenPose .caffemodel model was trained on COCO dataset.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Halide language (http://halide-lang.org/), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Choose one of target computation devices: '
'%d: CPU target (by default), '
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: NCS2 VPU, '
'%d: HDDL VPU' % targets)
args, _ = parser.parse_known_args()
def get_pose_map(image, proto_path, model_path, backend, target, height=256, width=192):
radius = 5
inp = cv.dnn.blobFromImage(image, 1.0 / 255, (width, height))
net = cv.dnn.readNet(proto_path, model_path)
net.setPreferableBackend(backend)
net.setPreferableTarget(target)
net.setInput(inp)
out = net.forward()
threshold = 0.1
_, out_c, out_h, out_w = out.shape
pose_map = np.zeros((height, width, out_c - 1))
# last label: Background
for i in range(0, out.shape[1] - 1):
heatMap = out[0, i, :, :]
keypoint = np.full((height, width), -1)
_, conf, _, point = cv.minMaxLoc(heatMap)
x = width * point[0] // out_w
y = height * point[1] // out_h
if conf > threshold and x > 0 and y > 0:
keypoint[y - radius:y + radius, x - radius:x + radius] = 1
pose_map[:, :, i] = keypoint
pose_map = pose_map.transpose(2, 0, 1)
return pose_map
class BilinearFilter(object):
"""
PIL bilinear resize implementation
image = image.resize((image_width // 16, image_height // 16), Image.BILINEAR)
"""
def _precompute_coeffs(self, inSize, outSize):
filterscale = max(1.0, inSize / outSize)
ksize = int(np.ceil(filterscale)) * 2 + 1
kk = np.zeros(shape=(outSize * ksize, ), dtype=np.float32)
bounds = np.empty(shape=(outSize * 2, ), dtype=np.int32)
centers = (np.arange(outSize) + 0.5) * filterscale + 0.5
bounds[::2] = np.where(centers - filterscale < 0, 0, centers - filterscale)
bounds[1::2] = np.where(centers + filterscale > inSize, inSize, centers + filterscale) - bounds[::2]
xmins = bounds[::2] - centers + 1
points = np.array([np.arange(row) + xmins[i] for i, row in enumerate(bounds[1::2])]) / filterscale
for xx in range(0, outSize):
point = points[xx]
bilinear = np.where(point < 1.0, 1.0 - abs(point), 0.0)
ww = np.sum(bilinear)
kk[xx * ksize : xx * ksize + bilinear.size] = np.where(ww == 0.0, bilinear, bilinear / ww)
return bounds, kk, ksize
def _resample_horizontal(self, out, img, ksize, bounds, kk):
for yy in range(0, out.shape[0]):
for xx in range(0, out.shape[1]):
xmin = bounds[xx * 2 + 0]
xmax = bounds[xx * 2 + 1]
k = kk[xx * ksize : xx * ksize + xmax]
out[yy, xx] = np.round(np.sum(img[yy, xmin : xmin + xmax] * k))
def _resample_vertical(self, out, img, ksize, bounds, kk):
for yy in range(0, out.shape[0]):
ymin = bounds[yy * 2 + 0]
ymax = bounds[yy * 2 + 1]
k = kk[yy * ksize: yy * ksize + ymax]
out[yy] = np.round(np.sum(img[ymin : ymin + ymax, 0:out.shape[1]] * k[:, np.newaxis], axis=0))
def imaging_resample(self, img, xsize, ysize):
height, width = img.shape[0:2]
bounds_horiz, kk_horiz, ksize_horiz = self._precompute_coeffs(width, xsize)
bounds_vert, kk_vert, ksize_vert = self._precompute_coeffs(height, ysize)
out_hor = np.empty((img.shape[0], xsize), dtype=np.uint8)
self._resample_horizontal(out_hor, img, ksize_horiz, bounds_horiz, kk_horiz)
out = np.empty((ysize, xsize), dtype=np.uint8)
self._resample_vertical(out, out_hor, ksize_vert, bounds_vert, kk_vert)
return out
class CpVton(object):
def __init__(self, gmm_model, tom_model, backend, target):
super(CpVton, self).__init__()
self.gmm_net = cv.dnn.readNet(gmm_model)
self.tom_net = cv.dnn.readNet(tom_model)
self.gmm_net.setPreferableBackend(backend)
self.gmm_net.setPreferableTarget(target)
self.tom_net.setPreferableBackend(backend)
self.tom_net.setPreferableTarget(target)
self.downsample = BilinearFilter()
def prepare_agnostic(self, segm_image, input_image, pose_map, height=256, width=192):
palette = {
'Background' : (0, 0, 0),
'Hat' : (128, 0, 0),
'Hair' : (255, 0, 0),
'Glove' : (0, 85, 0),
'Sunglasses' : (170, 0, 51),
'UpperClothes' : (255, 85, 0),
'Dress' : (0, 0, 85),
'Coat' : (0, 119, 221),
'Socks' : (85, 85, 0),
'Pants' : (0, 85, 85),
'Jumpsuits' : (85, 51, 0),
'Scarf' : (52, 86, 128),
'Skirt' : (0, 128, 0),
'Face' : (0, 0, 255),
'Left-arm' : (51, 170, 221),
'Right-arm' : (0, 255, 255),
'Left-leg' : (85, 255, 170),
'Right-leg' : (170, 255, 85),
'Left-shoe' : (255, 255, 0),
'Right-shoe' : (255, 170, 0)
}
color2label = {val: key for key, val in palette.items()}
head_labels = ['Hat', 'Hair', 'Sunglasses', 'Face', 'Pants', 'Skirt']
segm_image = cv.cvtColor(segm_image, cv.COLOR_BGR2RGB)
phead = np.zeros((1, height, width), dtype=np.float32)
pose_shape = np.zeros((height, width), dtype=np.uint8)
for r in range(height):
for c in range(width):
pixel = tuple(segm_image[r, c])
if tuple(pixel) in color2label:
if color2label[pixel] in head_labels:
phead[0, r, c] = 1
if color2label[pixel] != 'Background':
pose_shape[r, c] = 255
input_image = cv.dnn.blobFromImage(input_image, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True)
input_image = input_image.squeeze(0)
img_head = input_image * phead - (1 - phead)
down = self.downsample.imaging_resample(pose_shape, width // 16, height // 16)
res_shape = cv.resize(down, (width, height), cv.INTER_LINEAR)
res_shape = cv.dnn.blobFromImage(res_shape, 1.0 / 127.5, mean=(127.5, 127.5, 127.5), swapRB=True)
res_shape = res_shape.squeeze(0)
agnostic = np.concatenate((res_shape, img_head, pose_map), axis=0)
agnostic = np.expand_dims(agnostic, axis=0)
return agnostic.astype(np.float32)
def get_warped_cloth(self, cloth_img, agnostic, height=256, width=192):
cloth = cv.dnn.blobFromImage(cloth_img, 1.0 / 127.5, (width, height), mean=(127.5, 127.5, 127.5), swapRB=True)
self.gmm_net.setInput(agnostic, "input.1")
self.gmm_net.setInput(cloth, "input.18")
theta = self.gmm_net.forward()
grid = self._generate_grid(theta)
warped_cloth = self._bilinear_sampler(cloth, grid).astype(np.float32)
return warped_cloth
def get_tryon(self, agnostic, warp_cloth):
inp = np.concatenate([agnostic, warp_cloth], axis=1)
self.tom_net.setInput(inp)
out = self.tom_net.forward()
p_rendered, m_composite = np.split(out, [3], axis=1)
p_rendered = np.tanh(p_rendered)
m_composite = 1 / (1 + np.exp(-m_composite))
p_tryon = warp_cloth * m_composite + p_rendered * (1 - m_composite)
rgb_p_tryon = cv.cvtColor(p_tryon.squeeze(0).transpose(1, 2, 0), cv.COLOR_BGR2RGB)
rgb_p_tryon = (rgb_p_tryon + 1) / 2
return rgb_p_tryon
def _compute_L_inverse(self, X, Y):
N = X.shape[0]
Xmat = np.tile(X, (1, N))
Ymat = np.tile(Y, (1, N))
P_dist_squared = np.power(Xmat - Xmat.transpose(1, 0), 2) + np.power(Ymat - Ymat.transpose(1, 0), 2)
P_dist_squared[P_dist_squared == 0] = 1
K = np.multiply(P_dist_squared, np.log(P_dist_squared))
O = np.ones([N, 1], dtype=np.float32)
Z = np.zeros([3, 3], dtype=np.float32)
P = np.concatenate([O, X, Y], axis=1)
first = np.concatenate((K, P), axis=1)
second = np.concatenate((P.transpose(1, 0), Z), axis=1)
L = np.concatenate((first, second), axis=0)
Li = linalg.inv(L)
return Li
def _prepare_to_transform(self, out_h=256, out_w=192, grid_size=5):
grid_X, grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
grid_X = np.expand_dims(np.expand_dims(grid_X, axis=0), axis=3)
grid_Y = np.expand_dims(np.expand_dims(grid_Y, axis=0), axis=3)
axis_coords = np.linspace(-1, 1, grid_size)
N = grid_size ** 2
P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
P_X = np.reshape(P_X,(-1, 1))
P_Y = np.reshape(P_Y,(-1, 1))
P_X = np.expand_dims(np.expand_dims(np.expand_dims(P_X, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0)
P_Y = np.expand_dims(np.expand_dims(np.expand_dims(P_Y, axis=2), axis=3), axis=4).transpose(4, 1, 2, 3, 0)
return grid_X, grid_Y, N, P_X, P_Y
def _expand_torch(self, X, shape):
if len(X.shape) != len(shape):
return X.flatten().reshape(shape)
else:
axis = [1 if src == dst else dst for src, dst in zip(X.shape, shape)]
return np.tile(X, axis)
def _apply_transformation(self, theta, points, N, P_X, P_Y):
if len(theta.shape) == 2:
theta = np.expand_dims(np.expand_dims(theta, axis=2), axis=3)
batch_size = theta.shape[0]
P_X_base = np.copy(P_X)
P_Y_base = np.copy(P_Y)
Li = self._compute_L_inverse(np.reshape(P_X, (N, -1)), np.reshape(P_Y, (N, -1)))
Li = np.expand_dims(Li, axis=0)
# split theta into point coordinates
Q_X = np.squeeze(theta[:, :N, :, :], axis=3)
Q_Y = np.squeeze(theta[:, N:, :, :], axis=3)
Q_X += self._expand_torch(P_X_base, Q_X.shape)
Q_Y += self._expand_torch(P_Y_base, Q_Y.shape)
points_b = points.shape[0]
points_h = points.shape[1]
points_w = points.shape[2]
P_X = self._expand_torch(P_X, (1, points_h, points_w, 1, N))
P_Y = self._expand_torch(P_Y, (1, points_h, points_w, 1, N))
W_X = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_X
W_Y = self._expand_torch(Li[:,:N,:N], (batch_size, N, N)) @ Q_Y
W_X = np.expand_dims(np.expand_dims(W_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
W_X = np.repeat(W_X, points_h, axis=1)
W_X = np.repeat(W_X, points_w, axis=2)
W_Y = np.expand_dims(np.expand_dims(W_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
W_Y = np.repeat(W_Y, points_h, axis=1)
W_Y = np.repeat(W_Y, points_w, axis=2)
A_X = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_X
A_Y = self._expand_torch(Li[:, N:, :N], (batch_size, 3, N)) @ Q_Y
A_X = np.expand_dims(np.expand_dims(A_X, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
A_X = np.repeat(A_X, points_h, axis=1)
A_X = np.repeat(A_X, points_w, axis=2)
A_Y = np.expand_dims(np.expand_dims(A_Y, axis=3), axis=4).transpose(0, 4, 2, 3, 1)
A_Y = np.repeat(A_Y, points_h, axis=1)
A_Y = np.repeat(A_Y, points_w, axis=2)
points_X_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 0], axis=3), axis=4)
points_X_for_summation = self._expand_torch(points_X_for_summation, points[:, :, :, 0].shape + (1, N))
points_Y_for_summation = np.expand_dims(np.expand_dims(points[:, :, :, 1], axis=3), axis=4)
points_Y_for_summation = self._expand_torch(points_Y_for_summation, points[:, :, :, 0].shape + (1, N))
if points_b == 1:
delta_X = points_X_for_summation - P_X
delta_Y = points_Y_for_summation - P_Y
else:
delta_X = points_X_for_summation - self._expand_torch(P_X, points_X_for_summation.shape)
delta_Y = points_Y_for_summation - self._expand_torch(P_Y, points_Y_for_summation.shape)
dist_squared = np.power(delta_X, 2) + np.power(delta_Y, 2)
dist_squared[dist_squared == 0] = 1
U = np.multiply(dist_squared, np.log(dist_squared))
points_X_batch = np.expand_dims(points[:,:,:,0], axis=3)
points_Y_batch = np.expand_dims(points[:,:,:,1], axis=3)
if points_b == 1:
points_X_batch = self._expand_torch(points_X_batch, (batch_size, ) + points_X_batch.shape[1:])
points_Y_batch = self._expand_torch(points_Y_batch, (batch_size, ) + points_Y_batch.shape[1:])
points_X_prime = A_X[:,:,:,:,0]+ \
np.multiply(A_X[:,:,:,:,1], points_X_batch) + \
np.multiply(A_X[:,:,:,:,2], points_Y_batch) + \
np.sum(np.multiply(W_X, self._expand_torch(U, W_X.shape)), 4)
points_Y_prime = A_Y[:,:,:,:,0]+ \
np.multiply(A_Y[:,:,:,:,1], points_X_batch) + \
np.multiply(A_Y[:,:,:,:,2], points_Y_batch) + \
np.sum(np.multiply(W_Y, self._expand_torch(U, W_Y.shape)), 4)
return np.concatenate((points_X_prime, points_Y_prime), 3)
def _generate_grid(self, theta):
grid_X, grid_Y, N, P_X, P_Y = self._prepare_to_transform()
warped_grid = self._apply_transformation(theta, np.concatenate((grid_X, grid_Y), axis=3), N, P_X, P_Y)
return warped_grid
def _bilinear_sampler(self, img, grid):
x, y = grid[:,:,:,0], grid[:,:,:,1]
H = img.shape[2]
W = img.shape[3]
max_y = H - 1
max_x = W - 1
# rescale x and y to [0, W-1/H-1]
x = 0.5 * (x + 1.0) * (max_x - 1)
y = 0.5 * (y + 1.0) * (max_y - 1)
# grab 4 nearest corner points for each (x_i, y_i)
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
# calculate deltas
wa = (x1 - x) * (y1 - y)
wb = (x1 - x) * (y - y0)
wc = (x - x0) * (y1 - y)
wd = (x - x0) * (y - y0)
# clip to range [0, H-1/W-1] to not violate img boundaries
x0 = np.clip(x0, 0, max_x)
x1 = np.clip(x1, 0, max_x)
y0 = np.clip(y0, 0, max_y)
y1 = np.clip(y1, 0, max_y)
# get pixel value at corner coords
img = img.reshape(-1, H, W)
Ia = img[:, y0, x0].swapaxes(0, 1)
Ib = img[:, y1, x0].swapaxes(0, 1)
Ic = img[:, y0, x1].swapaxes(0, 1)
Id = img[:, y1, x1].swapaxes(0, 1)
wa = np.expand_dims(wa, axis=0)
wb = np.expand_dims(wb, axis=0)
wc = np.expand_dims(wc, axis=0)
wd = np.expand_dims(wd, axis=0)
# compute output
out = wa*Ia + wb*Ib + wc*Ic + wd*Id
return out
class CorrelationLayer(object):
def __init__(self, params, blobs):
super(CorrelationLayer, self).__init__()
def getMemoryShapes(self, inputs):
fetureAShape = inputs[0]
b, _, h, w = fetureAShape
return [[b, h * w, h, w]]
def forward(self, inputs):
b, c, h, w = inputs[0].shape
feature_A = inputs[0].transpose(0, 3, 2, 1)
feature_B = inputs[1].transpose(0, 2, 3, 1)
feature_A = feature_A.reshape(1, -1, 512)
feature_B = feature_B.reshape(1, -1, 512)
feature_A = feature_A.transpose(0, 2, 1)
feature_mul = feature_B @ feature_A
feature_mul = feature_mul.reshape((b, h, w, h * w))
correlation_tensor = feature_mul.transpose((0, 3, 1, 2))
correlation_tensor = np.ascontiguousarray(correlation_tensor)
return [correlation_tensor]
if __name__ == "__main__":
if not os.path.isfile(args.gmm_model):
raise OSError("GMM model not exist")
if not os.path.isfile(args.tom_model):
raise OSError("TOM model not exist")
if not os.path.isfile(args.segmentation_model):
raise OSError("Segmentation model not exist")
if not os.path.isfile(findFile(args.openpose_proto)):
raise OSError("OpenPose proto not exist")
if not os.path.isfile(findFile(args.openpose_model)):
raise OSError("OpenPose model not exist")
person_img = cv.imread(args.input_image)
ratio = 256 / 192
inp_h, inp_w, _ = person_img.shape
current_ratio = inp_h / inp_w
if current_ratio > ratio:
center_h = inp_h // 2
out_h = inp_w * ratio
start = int(center_h - out_h // 2)
end = int(center_h + out_h // 2)
person_img = person_img[start:end, ...]
else:
center_w = inp_w // 2
out_w = inp_h / ratio
start = int(center_w - out_w // 2)
end = int(center_w + out_w // 2)
person_img = person_img[:, start:end, :]
cloth_img = cv.imread(args.input_cloth)
pose = get_pose_map(person_img, findFile(args.openpose_proto),
findFile(args.openpose_model), args.backend, args.target)
segm_image = parse_human(person_img, args.segmentation_model)
segm_image = cv.resize(segm_image, (192, 256), cv.INTER_LINEAR)
cv.dnn_registerLayer('Correlation', CorrelationLayer)
model = CpVton(args.gmm_model, args.tom_model, args.backend, args.target)
agnostic = model.prepare_agnostic(segm_image, person_img, pose)
warped_cloth = model.get_warped_cloth(cloth_img, agnostic)
output = model.get_tryon(agnostic, warped_cloth)
cv.dnn_unregisterLayer('Correlation')
person_img = cv.imread(args.input_image)
cloth_img = cv.imread(args.input_cloth)
cv.imshow('person_img', person_img)
cv.imshow('cloth_img', cloth_img)
winName = 'Virtual Try-On'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cv.imshow(winName, output)
cv.waitKey(0)
cv.destroyAllWindows()