-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
117 lines (95 loc) · 4.36 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import time
import os
class Config(object):
"""
class to save config parameter
"""
def __init__(self, dataset_name):
# Global
self.image_size = 720, 1280 #input image size
self.batch_size = 32 #train batch size
self.test_batch_size = 8 #test batch size
self.num_boxes = 12 #max number of bounding boxes in each frame
# Gpu
self.use_gpu=True
self.use_multi_gpu=True
self.device_list="0,1,2,3" #id list of gpus used for training
# Dataset
assert(dataset_name in ['volleyball', 'collective'])
self.dataset_name=dataset_name
if dataset_name=='volleyball':
self.data_path = '/path/to/your/data/volleyball' #data path for the volleyball dataset
self.train_seqs = [ 1,3,6,7,10,13,15,16,18,22,23,31,32,36,38,39,40,41,42,48,50,52,53,54,
0,2,8,12,17,19,24,26,27,28,30,33,46,49,51] #video id list of train set
self.test_seqs = [4,5,9,11,14,20,21,25,29,34,35,37,43,44,45,47] #video id list of test set
else:
self.data_path='/path/to/your/data/collective' #data path for the collective dataset
self.test_seqs=[5,6,7,8,9,10,11,15,16,25,28,29]
self.train_seqs=[s for s in range(1,45) if s not in self.test_seqs]
# Backbone
self.backbone='inv3'
self.crop_size = 5, 5 #crop size of roi align
self.train_backbone = False #if freeze the feature extraction part of network, True for stage 1, False for stage 2
self.out_size = 87, 157 #output feature map size of backbone
self.emb_features=1056 #output feature map channel of backbone
# Activity Action
self.num_actions = 9 #number of action categories
self.num_activities = 8 #number of activity categories
self.actions_loss_weight = 1.0 #weight used to balance action loss and activity loss
self.actions_weights = None
self.activities_weights = None
# Sample
self.num_frames = 3
self.num_before = 5
self.num_after = 5
# ARG params
self.num_features_boxes = 1024
self.num_features_relation=256
self.num_graph=16 #number of graphs
self.num_features_gcn=self.num_features_boxes
self.gcn_layers=1 #number of GCN layers
self.tau_sqrt=False
self.pos_threshold=0.2 #distance mask threshold in position relation
# Training Parameters
self.train_random_seed = 0
self.train_learning_rate = 1e-4 #initial learning rate
self.lr_plan = {11:3e-5, 21:1e-5} #change learning rate in these epochs
self.train_dropout_prob = 0.3 #dropout probability
self.weight_decay = 0 #l2 weight decay
self.max_epoch = 30 #max training epoch
self.test_interval_epoch = 2 # 2 for stage1
# Exp
self.training_stage=1 #specify stage1 or stage2
self.stage1_model_path='' #path of the base model, need to be set in stage2
self.test_before_train=False
self.exp_note='Group-Activity-Recognition'
self.exp_name=None
self.set_bn_eval = False
self.inference_module_name = 'dynamic_volleyball'
# Dynamic Inference
self.stride = 1
self.ST_kernel_size = 3
self.dynamic_sampling = True
self.sampling_ratio = [1, 3] # [1,2,4]
self.group = 1
self.scale_factor = True
self.beta_factor = True
self.load_backbone_stage2 = False
self.parallel_inference = False
self.hierarchical_inference = False
self.lite_dim = None
self.num_DIM = 1
self.load_stage2model = False
self.stage2model = None
# Actor Transformer
self.temporal_pooled_first = False
# SACRF + BiUTE
self.halting_penalty = 0.0001
def init_config(self, rank=0, need_new_folder=True):
if self.exp_name is None:
time_str=time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
self.exp_name='%s_stage%d_rank%d_%s'%(self.exp_note,self.training_stage,rank,time_str)
self.result_path='result/%s'%self.exp_name
self.log_path='result/%s/log.txt'%self.exp_name
if need_new_folder:
os.mkdir(self.result_path)