-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
242 lines (205 loc) · 9.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import numpy as np
import random
import json
import datetime
import time
import os
from pathlib import Path
from dotenv import load_dotenv
from torch.utils.data import DataLoader, DistributedSampler
from datasets import build_dataset
import util.misc as utils
from util.analysis import idx_key_to_label
from models import build_model
from models.dual_encoder_gsr import build_dual_enc_model
from engine import train_one_epoch, evaluate_swig, run_swig_analysis
from dual_enc_engine import train_one_epoch_dual_enc, evaluate_flicker
from torch.utils.tensorboard import SummaryWriter
from models.types import Namespace, ModelType
from models.mgsrtr_config import MGSRTRConfig
def main(args:MGSRTRConfig, captions_only: bool = False, images_only: bool = False):
utils.init_distributed_mode(args)
# print("git:\n {}\n".format(utils.get_sha()))
device = torch.device(args.device)
output_dir = Path(args.output_dir)
summary_dir = output_dir / 'summary' / str(args.model_type.value)
writer = SummaryWriter(str(summary_dir))
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# check dataset
if args.dataset_file == "swig" or args.dataset_file == 'flicker30k':
from datasets.swig import collater
else:
assert False, f"dataset {args.dataset_file} is not supported now"
# build dataset
dataset_train = build_dataset(image_set='train', args=args)
args.num_noun_classes = dataset_train.num_nouns()
if not args.test:
dataset_val = build_dataset(image_set='val', args=args)
else:
dataset_test = build_dataset(image_set='test', args=args)
# build model
if args.model_type == ModelType.DuelEncGSR:
model, tokenizer, criterion = build_dual_enc_model(args)
elif args.model_type == ModelType.GSRTR:
model, criterion = build_model(args)
tokenizer = None
else:
model, tokenizer, criterion = build_model(args)
model.to(device)
model_without_ddp = model
if args.resume:
model_path = Path(args.output_dir, args.saved_model)
if args.model_type == ModelType.DuelEncGSR or args.model_type == ModelType.GSRTR:
checkpoint = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoint['model'])
else:
model.soft_load_from_pretrained(str(model_path), device=device)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
}
]
# optimizer & LR scheduler
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
# dataset sampler
if not args.test and not args.dev:
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
if args.dev:
if args.distributed:
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
elif args.test:
if args.distributed:
sampler_test = DistributedSampler(dataset_test, shuffle=False)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
# dataset loader
if not args.test and not args.dev:
batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, num_workers=args.num_workers,
collate_fn=collater, batch_sampler=batch_sampler_train)
data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_val)
else:
if args.dev:
data_loader_val = DataLoader(dataset_val, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_val)
elif args.test:
data_loader_test = DataLoader(dataset_test, num_workers=args.num_workers,
drop_last=False, collate_fn=collater, sampler=sampler_test)
# use saved model for evaluation (using dev set or test set)
if args.dev or args.test:
# checkpoint = torch.load(args.saved_model, map_location='cpu')
# model.load_state_dict(checkpoint['model'])
if args.dev:
data_loader = data_loader_val
elif args.test:
data_loader = data_loader_test
if args.analysis:
log_stats = {}
verbs, nouns, roles, correct_verbs, correct_roles = run_swig_analysis(model, tokenizer, criterion, data_loader, device, args.output_dir)
verbs_stat = idx_key_to_label(verbs, args.idx_to_verb)
log_stats['verbs'] = verbs_stat
noun_stats = idx_key_to_label(nouns, args.idx_to_class)
log_stats['nouns'] = noun_stats
role_stats = idx_key_to_label(roles, args.idx_to_role)
log_stats['roles'] = role_stats
corr_verbs_stat = idx_key_to_label(correct_verbs, args.idx_to_verb)
log_stats['verbs_correct'] = corr_verbs_stat
corr_role_stats = idx_key_to_label(roles, args.idx_to_role)
log_stats['roles_correct'] = corr_role_stats
print(nouns)
print(noun_stats)
# write log
# if args.output_dir and utils.is_main_process():
# with (output_dir / "log_stats.txt").open("w") as f:
# f.write(json.dumps(log_stats) + "\n")
else:
if args.model_type == ModelType.DuelEncGSR:
test_stats = evaluate_flicker(model, tokenizer, criterion, data_loader, device)
else:
test_stats = evaluate_swig(model, tokenizer, criterion, data_loader, device, args.model_type, images_only=images_only, captions_only=captions_only)
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()}}
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log_tests.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
return None
# train model
print("Start training")
start_time = time.time()
max_test_mean_acc = 42
# save config before start training
args.save_config()
for epoch in range(args.start_epoch, args.epochs):
# train one epoch
if args.distributed:
sampler_train.set_epoch(epoch)
if args.model_type == ModelType.DuelEncGSR:
train_stats = train_one_epoch_dual_enc(model, tokenizer, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm, writer=writer)
else:
train_stats = train_one_epoch(model, tokenizer, criterion, data_loader_train, optimizer,
device, epoch, max_norm=args.clip_max_norm, model_type=args.model_type, writer=writer)
lr_scheduler.step()
# evaluate
if args.model_type == ModelType.DuelEncGSR:
test_stats = evaluate_flicker(model, tokenizer, criterion, data_loader_val, device)
else:
test_stats = evaluate_swig(model, tokenizer, criterion, data_loader_val, device, model_type=args.model_type)
# log & output
# **{f'test_{k}': v for k, v in test_stats.items()},
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
writer.add_scalars('epoch_loss', {
"training": train_stats['loss'],
"validation": test_stats['loss'],
}, epoch)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# save checkpoint for every new max accuracy
if log_stats['test_mean_acc_unscaled'] > max_test_mean_acc:
max_test_mean_acc = log_stats['test_mean_acc_unscaled']
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args}, checkpoint_path)
# write log
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
writer.close()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = MGSRTRConfig.from_env()
# args = MGSRTRConfig.from_config('./flicker30k/pretrained/v7/config.json')
args.test = True
args.analysis = True
main(args)